终身会员
搜索
    上传资料 赚现金

    【考前50天】最新高考数学重点专题三轮冲刺演练 专题05 圆锥曲线大题 (拔高版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题05 圆锥曲线大题拔高练(原卷版).docx
    • 解析
      专题05 圆锥曲线大题拔高练(解析版).docx
    专题05 圆锥曲线大题拔高练(原卷版)第1页
    专题05 圆锥曲线大题拔高练(原卷版)第2页
    专题05 圆锥曲线大题拔高练(原卷版)第3页
    专题05 圆锥曲线大题拔高练(解析版)第1页
    专题05 圆锥曲线大题拔高练(解析版)第2页
    专题05 圆锥曲线大题拔高练(解析版)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【考前50天】最新高考数学重点专题三轮冲刺演练 专题05 圆锥曲线大题 (拔高版)

    展开

    这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题05 圆锥曲线大题 (拔高版),文件包含专题05圆锥曲线大题拔高练原卷版docx、专题05圆锥曲线大题拔高练解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。


    1、多加总结。当三年所有的数学知识点加在一起,可能会使有些基础不牢固的学生犯迷糊。
    2、做题经验。哪怕同一题只改变数字,也能成为一道新的题目。
    3、多刷错题。多刷错题能够进一步地扫清知识盲区,多加巩固之后自然也就掌握了知识点。
    对于学生来说,三轮复习就相当于是最后的“救命稻草”,家长们同样是这样,不要老是去责怪孩子考试成绩不佳,相反,更多的来说,如果能够陪同孩子去反思成绩不佳的原因,找到问题的症结所在,更加重要。
    【一专三练】 专题05 圆锥曲线大题拔高练-新高考数学复习分层训练(新高考通用)
    1.(2023·浙江·校联考模拟预测)已知双曲线的离心率为,且点在双曲线C上.
    (1)求双曲线C的方程;
    (2)若点M,N在双曲线C上,且,直线不与y轴平行,证明:直线的斜率为定值.
    2.(2023·广东佛山·统考一模)已知椭圆的左焦点为,左、右顶点及上顶点分别记为、、,且.
    (1)求椭圆的方程;
    (2)设过的直线交椭圆于P、Q两点,若直线、与直线l:分别交于M、N两点,l与x轴的交点为K,则是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.
    3.(2023·广东江门·统考一模)已知M是平面直角坐标系内的一个动点,直线与直线垂直,A为垂足且位于第一象限,直线与直线垂直,B为垂足且位于第四象限,四边形(O为原点)的面积为8,动点M的轨迹为C.
    (1)求轨迹C的方程;
    (2)已知是轨迹C上一点,直线l交轨迹C于P,Q两点,直线,的斜率之和为1,,求的面积.
    4.(2023·浙江·永嘉中学校联考模拟预测)已知双曲线的顶点为,,过右焦点作其中一条渐近线的平行线,与另一条渐近线交于点,且.点为轴正半轴上异于点的任意点,过点的直线交双曲线于C,D两点,直线与直线交于点.
    (1)求双曲线的标准方程;
    (2)求证:为定值.
    5.(2023·江苏徐州·徐州市第七中学校考一模)已知双曲线的实轴长为4,左、右顶点分别为,经过点的直线与的右支分别交于两点,其中点在轴上方.当轴时,
    (1)设直线的斜率分别为,求的值;
    (2)若,求的面积.
    6.(2023·江苏泰州·统考一模)已知双曲线的左顶点为,过左焦点的直线与交于两点.当轴时,,的面积为3.
    (1)求的方程;
    (2)证明:以为直径的圆经过定点.
    7.(2023·辽宁葫芦岛·统考一模)在平面直角坐标系中,已知点,,直线PA与直线PB的斜率乘积为,点的轨迹为.
    (1)求的方程;
    (2)分别过,做两条斜率存在的直线分别交于C,D两点和E,F两点,且,求直线CD的斜率与直线EF的斜率之积.
    8.(2023·江苏南通·统考模拟预测)已知,,三个点在椭圆,椭圆外一点满足,,(为坐标原点).
    (1)求的值;
    (2)证明:直线与斜率之积为定值.
    9.(2023·河北衡水·衡水市第二中学校考模拟预测)已知抛物线:和椭圆:有共同的焦点F
    (1)求抛物线C的方程,并写出它的准线方程
    (2)过F作直线交抛物线C于P, Q两点,交椭圆E于M, N两点,证明:当且仅当轴时,取得最小值
    10.(2023·河北石家庄·统考一模)已知点在双曲线C:(,)上,过P作x轴的平行线,分别交双曲线C的两条渐近线于M,N两点,.
    (1)求双曲线C的方程;
    (2)若直线l:与双曲线C交于不同的两点A,B,设直线,的斜率分别为,,从下面两个条件中选一个(多选只按先做给分),证明:直线l过定点.
    ①;②.
    11.(2023·福建漳州·统考二模)已知椭圆的左、右焦点分别为,,且.过右焦点的直线l与C交于A,B两点,的周长为.
    (1)求C的标准方程;
    (2)过坐标原点O作一条与垂直的直线,交C于P,Q两点,求的取值范围;
    (3)记点A关于x轴的对称点为M(异于B点),试问直线BM是否过定点?若是,请求出定点坐标;若不是请说明理由.
    12.(2023·福建泉州·统考三模)已知椭圆的左、右顶点分别为A,B.直线l与C相切,且与圆交于M,N两点,M在N的左侧.
    (1)若,求l的斜率;
    (2)记直线的斜率分别为,证明:为定值.
    13.(2023·山东·烟台二中校考模拟预测)已知椭圆过点,且的焦距是椭圆的焦距的3倍.
    (1)求的标准方程;
    (2)设M,N是上异于点P的两个动点,且,试问直线是否过定点?若过,求出定点坐标;若不过,请说明理由.
    14.(2023·山东青岛·统考一模)已知O为坐标原点,椭圆的左,右焦点分别为,,A为椭圆C的上顶点,为等腰直角三角形,其面积为1.
    (1)求椭圆C的标准方程;
    (2)直线l交椭圆C于P,Q两点,点W在过原点且与l平行的直线上,记直线WP,WQ的斜率分别为,,的面积为S.从下面三个条件①②③中选择两个条件,证明另一个条件成立.
    ①;②;③W为原点O.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    15.(2023·山东济南·一模)已知抛物线(p为常数,).
    (1)若直线与H只有一个公共点,求k;
    (2)贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图,A,B,C是H上不同的三点,过三点的三条切线分别两两交于点D,E,F,证明:.
    16.(2023·山东聊城·统考一模)已知双曲线:(,)的右焦点为,一条渐近线的倾斜角为60°,且上的点到的距离的最小值为1.
    (1)求的方程;
    (2)设点,,动直线:与的右支相交于不同两点,,且,过点作,为垂足,证明:动点在定圆上,并求该圆的方程.
    17.(2023·湖北·校联考模拟预测)已知椭圆过点.
    (1)若椭圆E的离心率,求b的取值范围;
    (2)已知椭圆E的离心率,M,N为椭圆E上不同两点,若经过M,N两点的直线与圆相切,求线段的最大值.
    18.(2023·湖北武汉·统考模拟预测)过坐标原点作圆的两条切线,设切点为,直线恰为抛物的准线.
    (1)求抛物线的标准方程;
    (2)设点是圆上的动点,抛物线上四点满足:,设中点为.
    (i)求直线的斜率;
    (ii)设面积为,求的最大值.
    19.(2023·江苏·统考一模)已知直线与抛物线交于两点,,与抛物线交于两点,,其中A,C在第一象限,B,D在第四象限.
    (1)若直线过点,且,求直线的方程;
    (2)①证明:;
    ②设,的面积分别为,,(O为坐标原点),若,求.
    20.(2023·湖北·荆州中学校联考二模)已知点为抛物线上的点,,为抛物线上的两个动点,为抛物线的准线与轴的交点,为抛物线的焦点.
    (1)若,求证:直线恒过定点;
    (2)若直线过点,,在轴下方,点在,之间,且,求的面积和的面积之比.
    21.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知A,B为椭圆左右两个顶点,动点D是椭圆上异于A,B的一点,点F是右焦点.当点D的坐标为时,.
    (1)求椭圆的方程.
    (2)已知点C的坐标为,直线CD与椭圆交于另一点E,判断直线AD与直线BE的交点P是否在一定直线上,如果是,求出该直线方程;如果不是,请说明理由.
    22.(2023·湖南邵阳·统考二模)已知双曲线的右顶点为,左焦点到其渐近线的距离为2,斜率为的直线交双曲线于A,B两点,且.
    (1)求双曲线的方程;
    (2)过点的直线与双曲线交于P,Q两点,直线,分别与直线相交于,两点,试问:以线段为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.
    23.(2023·湖南·模拟预测)已知椭圆的左、右焦点分别为,上顶点为,若△为等边三角形,且点在椭圆E上.
    (1)求椭圆E的方程;
    (2)设椭圆E的左、右顶点分别为,不过坐标原点的直线l与椭圆E相交于A、B两点(异于椭圆E的顶点),直线与y轴的交点分别为M、N,若,证明:直线过定点,并求该定点的坐标.
    24.(2023·湖南张家界·统考二模)已知曲线C的方程:,倾斜角为的直线过点,且与曲线C相交于A,B两点.
    (1)时,求三角形的面积;
    (2)在x轴上是否存在定点M,使直线与曲线C有两个交点A、B的情况下,总有?如果存在,求出定点M;如果不存在,请说明理由.
    25.(2023·湖南·校联考模拟预测)如图,在平面直角坐标系中,已知直线与椭圆交于两点(在轴上方),且,设点在轴上的射影为点,的面积为,抛物线的焦点与椭圆的焦点重合,斜率为的直线过抛物线的焦点与椭圆交于两,点,与抛物线交于两点.
    (1)求椭圆及抛物线的标准方程;
    (2)是否存在常数,使为常数?若存在,求的值;若不存在,说明理由.
    26.(2023·湖南常德·统考一模)已知双曲线的右顶点到渐近线的距离为,虚轴长为2,过双曲线C的右焦点F作直线MN(不与x轴重合)与双曲线C相交于M,N两点,过点M作直线l:的垂线ME,E为垂足.
    (1)求双曲线C的标准方程;
    (2)是否存在实数t,使得直线EN过x轴上的定点P,若存在,求t的值及定点P的坐标;若不存在,说明理由.
    27.(2023·广东揭阳·校考模拟预测)椭圆、双曲线、抛物线三种圆锥曲线有许多相似性质.比如三种曲线都可以用如下方式定义(又称圆锥曲线第二定义):到定点的距离与到定直线的距离之比为常数e的点的轨迹为圆锥曲线.当为椭圆,当为抛物线,当为双曲线.定点为焦点,定直线为对应的准线,常数e为圆锥曲线的离心率.依据上述表述解答下列问题.
    已知点,直线动点满足到点F的距离与到定直线l的距离之比为
    (1)求曲线的轨迹方程;
    (2)在抛物线中有如下性质:如图,在抛物线中,O为抛物线顶点,过焦点F的直线交抛物线与A,B两点,连接,并延长交准线l与D,C,则以为直径的圆与相切于点F,以为直径的圆与相切于中点.那么如图在曲线E中是否具有相同的性质?若有,证明它们成立;若没有,说明理由.
    28.(2023·广东广州·统考二模)已知直线与抛物线交于,两点,且与轴交于点,过点,分别作直线的垂线,垂足依次为,,动点在上.
    (1)当,且为线段的中点时,证明:;
    (2)记直线,,的斜率分别为,,,是否存在实数,使得?若存在,求的值;若不存在,请说明理由.
    29.(2023·广东惠州·统考模拟预测)已知椭圆的右焦点为,点在椭圆上且.
    (1)求椭圆的方程;
    (2)点分别在椭圆和直线上,,为的中点,若为直线与直线的交点.是否存在一个确定的曲线,使得始终在该曲线上?若存在,求出该曲线的轨迹方程;若不存在,请说明理由.
    30.(2023·江苏南通·海安高级中学校考一模)某城市决定在夹角为30°的两条道路EB、EF之间建造一个半椭圆形状的主题公园,如图所示,千米,O为AB的中点,OD为椭圆的长半轴,在半椭圆形区域内再建造一个三角形游乐区域OMN,其中M,N在椭圆上,且MN的倾斜角为45°,交OD于G.
    (1)若千米,为了不破坏道路EF,求椭圆长半轴长的最大值;
    (2)若椭圆的离心率为,当线段OG长为何值时,游乐区域的面积最大?

    相关试卷

    【考前50天】最新高考数学重点专题三轮冲刺演练 专题05 圆锥曲线大题 (基础版):

    这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题05 圆锥曲线大题 (基础版),文件包含专题05圆锥曲线大题基础练原卷版docx、专题05圆锥曲线大题基础练解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    【考前50天】最新高考数学重点专题三轮冲刺演练 专题04 概率统计与期望方差分布列大题 (拔高版):

    这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题04 概率统计与期望方差分布列大题 (拔高版),文件包含专题04概率统计与期望方差分布列大题拔高练原卷版docx、专题04概率统计与期望方差分布列大题拔高练解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    【考前50天】最新高考数学重点专题三轮冲刺演练 专题03 立体几何大题 (基础练):

    这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题03 立体几何大题 (基础练),文件包含专题03立体几何大题基础练原卷版docx、专题03立体几何大题基础练解析版docx等2份试卷配套教学资源,其中试卷共69页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map