所属成套资源:人教版八年级下册数学导学案全册
初中数学人教版八年级下册18.1.2 平行四边形的判定第3课时导学案
展开
这是一份初中数学人教版八年级下册18.1.2 平行四边形的判定第3课时导学案,共4页。学案主要包含了新课导入,分层学习,评价等内容,欢迎下载使用。
一、新课导入
1.导入课题
同学们,前面我们学习平行四边形时,常把它分割成三角形来研究,今天我们反过来利用平行四边形来研究三角形的有关问题.
2.学习目标
(1)知道什么是三角形的中位线.
(2)知道三角形中位线的性质.
3.学习重、难点
重点:三角形的中位线及其性质.
难点:三角形中位线性质的运用.
二、分层学习
1.自学指导
(1)自学内容:P47练习下面至P48探究上面的内容.
(2)自学时间:3分钟.
(3)自学方法:看书,看图,认识三角形中位线的意义.
(4)自学参考提纲:
①画图说明什么是三角形的中位线,一个三角形有几条中位线?三角形的中位线与中线有什么不同?怎么区分?
②如图,△ABC中,D、E、F分别是AB、BC、CA的中点,连接DE、EF、DF、AE、BF、CD,则图中的中线是AE、BF、CD,中位线是DE、DF、EF.
2.自学:结合自学参考提纲进行自主学习.
3.助学
(1)师助生:①明了学情:了解学生是否掌握中位线的准确含义.
②差异指导:指导中位线与中线的区别.
(2)生助生:学生之间相互交流、研讨疑难之处.
4.强化:三角形中位线的意义.
1.自学指导
(1)自学内容:三角形中位线与第三边的位置和大小关系.
(2)自学时间:10分钟.
(3)自学方法:测量中位线长、第三边长并猜想.
(4)探究提纲:
①任画一个三角形,取三边的中点并相互连接,然后量中位线长和第三边长,重复画几次,看结果如何.
②通过测量一条中位线长与第三边的长,你有什么发现吗?
③如右图,△ABC中,D、E分别为AB、AC的中点,试量一下DE、BC的长,比较量出的数据,你有什么发现?DE与BC在位置上有什么关系吗?说出你的猜想.
④结合你的实验猜想出三角形的中位线的性质是.
2.自学:学生结合探究提纲自主探究学习.
3.助学
(1)师助生:
①明了学情:关注学生画图、度量的情况及判断总结的结论是否合理.
②差异指导:指导学生结合测量数据进行猜想并归纳.
(2)生助生:学生研讨疑难之处.
4.强化:三角形中位线的性质.
1.自学指导
(1)自学内容:探究三角形中位线性质的证明方法.
(2)自学时间:5分钟.
(3)自学方法:由DE=12BC思考DE怎么处理可使BC=2DE.
(4)探究提纲:
如右图,D、E分别为AB、AC的中点,
求证:.
①将DE如何处理(延长)得到与BC相等的线段?
②又由AE=CE,联想四边形ADCF是什么四边形?由此可得到CF与BD是什么关系?
③由②中探讨的CF、BD的关系可得四边形DBCF是什么四边形?
∴DE ∥ BC,∵DE=DF,∴DE=BC.
2.自学:学生结合探究提纲自主学习.
3.助学
(1)师助生:
①明了学情:关注学生的探究思路和方法是否正确,思考过程中的难点在哪里?
②差异指导:由DE=BC启发延长DE多少?由AE=CE思考四边形ADCF是什么样的四边形?由此可得到什么?找到与BC相等的线段.
(2)生助生:学生之间相互交流帮助.
4.强化
(1)三角形中位线的意义.
(2)三角形中位线的性质.
三、评价
1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑之处..
2.教师对学生的评价:
(1)表现性评价:对学生在课堂学习中的态度、方法和收效进行点评.
(2)纸笔评价:评价作业.
3.教师的自我评价(教学反思).
本课时的核心是三角形中位线的意义及性质的运用.若已知条件中的中点较多,要联想“三角形的中位线”.不是中位线的,可以通过辅助线构造.
(时间:12分钟满分:100分)
一、基础巩固(60分)
1.(20分)如图,点D,E,F分别是△ABC三边的中点,若AB=10cm,AC=8cm,
BC=12cm,则EF=5cm,DF=4cm,DE=6cm,△DEF的周长为15cm .
2.(10分)△ABC中,AB=4,BC=5,CA=7,顺次连接三边中点得△DEF的周长为 8 .
3.(10分)三角形的三条中位线将其分成 4 个全等三角形.
4.(10分)直角三角形的两条直角边长分别6cm,8cm,则连接这两边中点的线段长为 5 cm.
5.(10分)三角形的三条中位线的长分别为3cm,4cm,6cm,则这个三角形的周长为 26 cm.
二、综合应用(20分)
6.已知:如图,点D,E,F分别是△ABC三边上的中点.求证:AD与EF互相平分.(提示:连接ED,FD,先证四边形AEDF是平行四边形)
证明:如图,连接ED、FD,
∵E、D分别为△ABC的中点,
∴ED=AC,ED∥AC,即ED∥AF.
又∵F为AC的中点,
∴ED=AF.
∴四边形AEDF为平行四边形,
∴AD与EF互相平分.
三、拓展延伸(20分)
7.如图,在△ABC中,BD、CE分别是AC、AB上的中线,BD与CE相交于点O,试探究BO与OD的大小关系.(提示:分别取OB、OC的中点M、N)
解:OB=OD,
如图,取OB、OC的中点M、N,连接EM、MN、ND.∵E、D分别为△ABC的中点,
∴ED∥BC,ED=12BC,
∵M、N是△OBC的中点,∴MN∥BC,MN=BC.
∴ED∥MN,ED=MN.
∴四边形EDNM是平行四边形.
∴OD=OM=BM.
∴OB=2OD.
相关学案
这是一份初中人教版18.1.2 平行四边形的判定第2课时学案,共3页。学案主要包含了探究新知,练一练,课堂小结,课堂作业,课后反思等内容,欢迎下载使用。
这是一份初中数学18.1.2 平行四边形的判定第3课时学案设计,共2页。学案主要包含了学习目标,学习重点,学习难点,学习过程等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册18.1.2 平行四边形的判定第3课时导学案,共6页。学案主要包含了知识回顾,课堂小结等内容,欢迎下载使用。