所属成套资源:2025届高考数学一轮总复习(适用于新高考新教材)ppt
- 第10章 统计与成对数据的统计分析 第3节 第2课时 列联表与独立性检验 2025届高考数学一轮总复习(适用于新高考新教材)ppt 课件 1 次下载
- 第11章 计数原理、概率、随机变量及其分布 第1节 排列与组合 2025届高考数学一轮总复习(适用于新高考新教材)ppt 课件 1 次下载
- 第11章 计数原理、概率、随机变量及其分布 第2节 二项式定理及其应用 2025届高考数学一轮总复习(适用于新高考新教材)ppt 课件 1 次下载
- 第11章 计数原理、概率、随机变量及其分布 第3节 随机事件的概率与古典概型 2025届高考数学一轮总复习(适用于新高考新教材)ppt 课件 1 次下载
- 第11章 计数原理、概率、随机变量及其分布 第7节 正态分布 2025届高考数学一轮总复习(适用于新高考新教材)ppt 课件 1 次下载
第11章 计数原理、概率、随机变量及其分布 第6节 二项分布与超几何分布 2025届高考数学一轮总复习(适用于新高考新教材)ppt
展开这是一份第11章 计数原理、概率、随机变量及其分布 第6节 二项分布与超几何分布 2025届高考数学一轮总复习(适用于新高考新教材)ppt,共30页。PPT课件主要包含了目录索引,伯努利试验,XBnp,p1-p,np1-p等内容,欢迎下载使用。
研考点 精准突破
强基础 固本增分
(3)两点分布与二项分布的均值、方差若随机变量X服从两点分布,则E(X)= __________,D(X)=__________. 若X~B(n,p),则E(X)=__________,D(X)=__________.
微点拨判断一个随机变量是否服从二项分布的两个关键点:(1)在一次试验中,事件A发生与不发生,二者必居其一,且A发生的概率不变;(2)试验可以独立重复进行n次.
微点拨超几何分布与二项分布的关系
题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)1.二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项,其中a=p,b=1-p.( )2.从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.( )3.两点分布是二项分布当n=1时的特殊情况.( )4.若X表示n次重复抛掷1枚骰子出现点数是3的倍数的次数,则X服从二项分布.( )
题组二 回源教材5.(人教A版选择性必修第三册7.4.1节例1改编)将一枚质地均匀的硬币重复抛掷10次,则恰好出现5次正面朝上的概率是__________.
6.(人教B版选择性必修第二册4.2.4节练习B第1题)已知随机变量X服从参数为n,p的二项分布,即X~B(n,p),且E(X)=7,D(X)=6,则p的值为__________.
题组三 连线高考7.(2005·辽宁,3)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )
考点一 二项分布及其应用
例1(2024·安徽蚌埠模拟)某地有一家知名蛋糕房根据以往某种蛋糕在100天里的销售记录,绘制了以下频数分布表:
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用ξ表示在未来3天里日销售量不低于150个的天数,求随机变量ξ的分布列、期望和方差.
设事件A:“在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个”,则P(A)=0.62×0.15+0.15×0.62=0.108.
[对点训练1](2024·四川攀枝花模拟)某企业从生产的一批产品中抽取100个作为样本,测量这些产品的一项质量指标值,由测量结果制成如图所示的频率分布直方图.
考点二 超几何分布及其应用
例2每年的4月23日是联合国教科文组织确定的“世界读书日”,为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了1 000名高一学生进行在线调查,得到了这1 000名学生的日平均阅读时间(单位:小时),并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.
(1)求a的值:(2)为进一步了解这1 000名学生数字媒体阅读时间和纸质图书阅读时间的分配情况,从日平均阅读时间在(8,10],(10,12]两组上的学生中,采用分层随机抽样的方法抽取了10人,现从这10人中随机抽取3人,记日平均阅读时间在(10,12]上的学生人数为X,求X的分布列和数学期望.
解 (1)由频率分布直方图得,2×(0.02+0.03+0.05+0.05+0.15+a+0.05+0.04+0.01)=1,解得a=0.10.
[对点训练2](2024·河南洛阳模拟)某校为了调查假期学生在家锻炼身体的情况,随机抽查了150名学生,并统计出他们在家的锻炼时长,得到频率分布直方图如图所示.
(1)求a的值,并估计锻炼时长的平均数(同组数据用该组区间的中点值代替);(2)从锻炼时长分布在[20,30),[30,40),[40,50),[50,60]的学生中按分层抽样的方法抽出7名学生,再从这7名学生中随机抽出3人,记3人中锻炼时长超过40分钟的学生人数为X,求X的分布列和数学期望.
解 (1)由题意可得,(0.006+0.010+2a+0.024+0.036)×10=1,解得a=0.012.样本数据在[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)的频率分别为0.06,0.10,0.12,0.36,0.24,0.12,则0.06×5+0.10×15+0.12×25+0.36×35+0.24×45+0.12×55=34.8,所以估计锻炼时长的平均数为34.8.
相关课件
这是一份第11章 计数原理、概率、随机变量及其分布 第7节 正态分布 2025届高考数学一轮总复习(适用于新高考新教材)ppt,共29页。PPT课件主要包含了目录索引,XNμσ2,μ2μ1μ3,σ1σ3σ2等内容,欢迎下载使用。
这是一份第11章 计数原理、概率、随机变量及其分布 第3节 随机事件的概率与古典概型 2025届高考数学一轮总复习(适用于新高考新教材)ppt,共43页。PPT课件主要包含了目录索引,基本结果,样本空间,事件的分类,频率fnA,PA+PB,-PA,-PB,PA≤PB,有限个等内容,欢迎下载使用。
这是一份第11章 计数原理、概率、随机变量及其分布 第1节 排列与组合 2025届高考数学一轮总复习(适用于新高考新教材)ppt,共44页。PPT课件主要包含了第1节排列与组合,目录索引,类类独立不重不漏,步步相依步骤完整,m+n,m×n,一定的顺序,排列数与组合数,不同排列,不同组合等内容,欢迎下载使用。