中考数学一轮复习专题2.2 一元二次方程的解法【八大题型】(举一反三)(北师大版)(解析版)
展开
这是一份中考数学一轮复习专题2.2 一元二次方程的解法【八大题型】(举一反三)(北师大版)(解析版),共26页。
TOC \ "1-3" \h \u
\l "_Tc25272" 【题型1 用直接开平方法解一元二次方程】 PAGEREF _Tc25272 \h 1
\l "_Tc28978" 【题型2 配方法解一元二次方程】 PAGEREF _Tc28978 \h 3
\l "_Tc14325" 【题型3 公式法解一元二次方程】 PAGEREF _Tc14325 \h 6
\l "_Tc21768" 【题型4 因式分解法解一元二次方程】 PAGEREF _Tc21768 \h 8
\l "_Tc4587" 【题型5 用指定方法解一元二次方程】 PAGEREF _Tc4587 \h 10
\l "_Tc9824" 【题型6 用适当的方法解一元二次方程 PAGEREF _Tc9824 \h 15
\l "_Tc12627" 【题型7 用换元法解一元二次方程】 PAGEREF _Tc12627 \h 20
\l "_Tc31343" 【题型8 配方法的应用】 PAGEREF _Tc31343 \h 23
【知识点1 直接开平方法解一元二次方程】
根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.
直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;
②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.
【题型1 用直接开平方法解一元二次方程】
【例1】(2023春·九年级课时练习)将方程(2x-1)2=9的两边同时开平方,
得2x-1=________,
即2x-1=________或2x-1=________,
所以x1=________,x2= ________.
【答案】 ±3 3 -3 2 -1
【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可.
【详解】∵(2x-1)2=9
∴2x-1=±3
∴2x-1=3,2x-1=-3
∴x1=2,x2=-1
【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键.
【变式1-1】(2023春·全国·九年级专题练习)解下列方程:4(x﹣1)2﹣36=0(直接开方法)
【答案】x1=4,x2=﹣2.
【分析】直接利用开方法进行求解即可得到答案;
【详解】解:∵4x−12−36=0
∴(x﹣1)2=9,
∴x﹣1=±3,
∴x1=4,x2=﹣2
【变式1-2】(2023·全国·九年级假期作业)如果方程(x−5)2=m−7可以用直接开平方求解,那么m的取值范围是( ).
A.m>0B.m⩾7
C.m>7D.任意实数
【答案】B
【分析】根据m−7≥0时方程有实数解,可求出m的取值范围.
【详解】由题意可知m−7≥0时方程有实数解,解不等式得m⩾7,故选B.
【点睛】形如x+m2=a的一元二次方程当a≥0时方程有实数解.
【变式1-3】(2023春·安徽蚌埠·九年级校联考阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为( )
A.x2+9=0B.-2x2=0C.x2-3=0D.(x-2)2=0
【答案】A
【分析】根据负数没有平方根即可求出答案.
【详解】解:(A)移项可得x2=−9,故选项A无解;
(B)−2x2=0,即x2=0,故选项B有解;
(C)移项可得x2=3,故选项C有解;
(D)x−22=0,故选项D有解;
故选A.
【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.
【知识点2 配方法解一元二次方程】
将一元二次方程配成(x+m)2=n的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.
用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二
次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④
把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法
来求出它的解,如果右边是一个负数,则判定此方程无实数解.
【题型2 配方法解一元二次方程】
【例2】(2023春·九年级统考课时练习)用配方法解方程,补全解答过程.
3x2−52=12x.
解:两边同除以3,得______________________________.
移项,得x2−16x=56.
配方,得_________________________________,
即(x−112)2=121144.
两边开平方,得__________________,
即x−112=1112,或x−112=−1112.
所以x1=1,x2=−56.
【答案】x2−56=16x x2−16x+(112)2=56+(112)2 x−112=±1112
【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.
【详解】3x2−52=12x.
解:两边同除以3,得x2−56=16x.
移项,得x2−16x=56.
配方,得x2−16x+(112)2=56+(112)2,
即(x−112)2=121144.
两边开平方,得x−112=±1112,
即x−112=1112,或x−112=−1112.
所以x1=1,x2=−56.
【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
【变式2-1】(2023春·全国·九年级专题练习)用配方法解一元二次方程:
(1)x2−3x−1=0(配方法);
(2)2x2−7x+3=0(配方法).
【答案】(1)x1=3+132,x2=3−132
(2)x1=12,x2=3
【分析】(1)将常数项移动到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;
(2)方程两边都除以2并将常数项移动到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.
(1)
解: x2−3x−1=0 ,
方程变形得:x2-3x=1,
配方得:x2-3x+ 94 =1+ 94 ,即(x- 32 )2= 134 ,
开方得:x- 32 =± 132 ,
解得:x1= 3+132 ,x2= 3−132 ;
(2)
解:移项得:2x2−7x=−3
系数化1得:x2−72x=−32
两边加上一次项系数一半的平方得:x2−72x+742=−32+742
配方得:x−742=2516
开方得:x−74=±54
解得:x1=12,x2=3.
【点睛】本题考查了一元二次方程的解法:配方法.熟练掌握配方法的一般步骤是解题的关键.
【变式2-2】(2023春·山西太原·九年级阶段练习)用配方法解一元二次方程2x2−5x+2=0.请结合题意填空,完成本题的解答.
解:方程变形为2x2−5x+(52)2−(52)2+2=0,第一步
配方,得(2x−52)2−174=0.第二步
移项,得(2x−52)2=174.第三步
两边开平方,得2x−52=±172.第四步
即2x−52=172或2x−52=−172.第五步
所以x1=5+174,x2=5−174.第六步
(1)上述解法错在第 步;
(2)请你用配方法求出该方程的解.
【答案】(1)一;(2)x1=2,x2=12.
【详解】试题分析:将方程二次项系数化为1,常数项移动右边,两边都加上(54)2,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
试题解析:变形得:x2−52x+1=0,变形得:x2−52x=−1,配方得:x2−52x+(54)2=−1+(54)2,即(x−54)2=916,开方得:x−54=±34,则x1=2,x2=12.
考点:解一元二次方程-配方法.
【变式2-3】(2023春·全国·九年级专题练习)(1)请用配方法解方程2x2−6x+3=0;
(2)请用配方法解一元二次方程ax2+bx+c=0a≠0.
【答案】(1)x1=3+3,2x2=3−32;(2)x1=−b+b2−4ac2a,x2=−b−b2−4ac2a
【分析】(1)先将两边同时除以二次项系数;再移项,将常数项移到右边;左右两边同时加上一次项系数的一半的平方,将左边写成完全平方式,最后再直接开平方;
(2)先将两边同时除以二次项系数;再移项,将常数项移到右边;左右两边同时加上一次项系数的一半的平方,将左边写成完全平方式,最后再直接开平方;
【详解】解:(1)2x2−6x+3=0
两边同时除以2得:x2−3x+32=0,
移项得:x2−3x=−32,
两边同时加上(32)2得:x2−3x+(32)2=−32+(32)2,
配方得:(x−32)2=34,
解得:x1=3+3,2x2=3−32;
(2)ax2+bx+c=0a≠0
两边同时除以a得:x2+bax+ca=0,
移项得:x2+bax=−ca,
两边同时加上(b2a)2得:x2+b2ax+(b2a)2=−ca+(b2a)2,
配方得:(x+b2a)2=−4ac+b24a2,
当b2−4ac>0时,
解得:x1=−b+b2−4ac2a,x2=−b−b2−4ac2a,
当b2−4ac=0时,
x1=x2=−b2a,
当b2−4acN.
故选:B.
【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.
【变式8-2】(2023·四川达州·模拟预测)选取二次三项式ax2+bx+ca≠0中的两项,配成完全平方式的过程叫配方.例如
①选取二次项和一次项配方:x2−4x+2=x−22−2;
②选取二次项和常数项配方:x2−4x+2=x−22+22−4x,
或x2−4x+2=x+22−4+22x
③选取一次项和常数项配方:x2−4x+2=2x−22−x2
根据上述材料,解决下面问题:
(1)写出x2−8x+4的两种不同形式的配方;
(2)已知x2+y2+xy−3y+3=0,求xy的值.
【答案】(1)答案解析;(2)1.
【分析】(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.
(2)根据配方法的步骤把x2+y2+xy−3y+3=0变形为x+y22+34y−22=0,再根据偶次幂的非负性质得到x+y2=0y−2=0,求出x,y的值,即可得出答案.
【详解】解:(1)x2−8x+4=x2−8x+16−16+4=(x−4)2−12,
或x2−8x+4=x2−4x+4−8x+4x=x−22−4x.
(2)∵x2+y2+xy−3y+3=0,
∴x2+xy+y24+3y24−3y+3=0,即x+y22+34y−22=0.
∴x+y2=0y−2=0,解得x=−1y=2.
∴xy=−12=1.
【变式8-3】(2023·四川成都·统考二模)在测量时,为了确定被测对象的最佳值,经常要对同一对象测量若干次,然后选取与各测量数据的差的平方和为最小的数作为最佳近似值.例如测量数据为0.8,1.2,1.3,1.5时,设最佳值为a,那么(a−0.8)2+(a−1.2)2+(a−1.3)2+(a−1.5)2应为最小,此时a=_________;设某次实验测量了m次,由这m次数据的得到的最佳值为a1;又测量了n次,这n次数据得到的最佳值为a2,则利用这m+n次数据得到的最佳值为__________.
【答案】 1.2 ma1+na2m+n
【分析】利用完全平方公式展开后合并,再将(a−0.8)2+(a−1.2)2+(a−1.3)2+(a−1.5)2配方得到4a−1.22+1.26,则利用非负数的性质得到当a=1.2时,代数式有最小值;m+n次数据得到的最佳值为m+n个数据的平均数.
【详解】解:(a−0.8)2+(a−1.2)2+(a−1.3)2+(a−1.5)2
=a2−1.6a+0.82+a2−2.4a+1.22+a2−2.6a+1.32+a2−3a+1.52
=4a2−9.6a+7.02
=4a−1.22+1.26,
∵4a−1.22≥0,
∴当a=1.2时,(a−0.8)2+(a−1.2)2+(a−1.3)2+(a−1.5)2有最小值;
∵m次数据的得到的最佳值为a1,n次数据得到的最佳值为a2,
设最佳值为a,与m个数据的差的平方和为m(a−a1)2+t,与n个数据的差的平方和为n(a−a2)2+s,
m(a−a1)2+t+n(a−a2)2+s
=ma2−2ma1a+ma12+t+na2−2na2a+na22+s
=(m+n)a−ma1+na2m+n2−(ma1+na2)2m+n+ma12+na22+t+s
当a=ma1+na2m+n时,m(a−a1)2+t+n(a−a2)2+s最小,
∴m+n次数据得到的最佳值为ma1+na2m+n.
故答案为:1.2,ma1+na2m+n.
【点睛】本题考查了配方法:根据完全平方公式为a2±2ab+b2=a±b2,二次项系数为1的多项式配成完全平方式是加上一次项系数一半的平方,注意等式是恒等变形是解题关键.
相关试卷
这是一份中考数学一轮复习:专题12.1 函数【八大题型】(举一反三)(沪科版)(解析版),共27页。
这是一份中考数学一轮复习专题5.2 视图【八大题型】(举一反三)(北师大版)(解析版),共22页。
这是一份中考数学一轮复习专题5.1 投影【八大题型】(举一反三)(北师大版)(解析版),共25页。