|试卷下载
终身会员
搜索
    上传资料 赚现金
    中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版)
    立即下载
    加入资料篮
    中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版)01
    中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版)02
    中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版)03
    还剩22页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版)

    展开
    这是一份中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版),共25页。

    参考答案与试题解析
    选择题(共10小题,满分30分,每小题3分)
    1.(3分)(2023下·陕西商洛·七年级统考期末)如图,直线a,b被直线c所截,则下列说法中错误的是( )

    ∠1与∠2是邻补角B.∠1与∠3是对顶角
    C.∠2与∠4是同位角D.∠3与∠4是内错角
    【答案】D
    【分析】根据邻补角的定义,可判断A,根据对顶角的定义,可判断B,根据同位角的定义,可判断C,根据内错角的定义,可判断D
    【详解】解:A、∠1与∠2有一条公共边,另一边互为反向延长线,故A正确;
    B、∠1与∠3的两边互为反向延长线,故B正确;
    C、∠2与∠4的位置相同,故C正确;
    D、∠3与∠4是同旁内角.故D错误;
    故选:D.
    【点睛】本题考查了邻补角,对顶角,同位角、内错角、同旁内角,根据定义求解是解题关键.有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.同位角的概念:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.内错角的概念:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角的概念:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.
    2.(3分)(2023下·天津·七年级校考期末)已知OA⊥OB,直线CD经过点O且∠AOC=40度,则∠BOD等于( )
    A.130°B.50°C.130°或50°D.40°
    【答案】C
    【分析】根据垂线的定义结合题意,分OC在∠AOB的内部时,OC在∠AOB的外部时,求解即可.
    【详解】解:当OC在∠AOB的内部时,
    ∵∠AOC=40°,OA⊥OB,
    ∴∠BOC=90°−∠AOC=90°−40°=50°,
    ∴∠BOD=180°−∠BOC=180°−50°=130°.
    当OC在∠AOB的外部时,
    ∠BOD=180°−∠AOC−∠AOB=180°−40°−90°=50°.
    故选C.

    【点睛】本题考查垂线的定义,邻补角互补以及角的和差关系,利用数形结合和分类讨论的思想是解题关键.
    3.(3分)(2023下·新疆乌鲁木齐·七年级校考期末)如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度

    A.12B.18C.22D.24
    【答案】A
    【分析】根据OD′∥AC,运用两直线平行,同位角相等,求得∠BOD′=∠A,即可得到∠DOD′的度数,即旋转角的度数.
    【详解】解:∵OD′∥AC,
    ∴∠BOD′=∠A=70°,
    ∴∠DOD′=82°−70°=12°.
    故选:A.
    【点睛】本题考查了旋转角以及平行线的判定定理的运用,掌握平行线的判定方法是关键.
    4.(3分)(2023下·浙江宁波·七年级统考期末)如图,AB∥DE,BC⊥CD,设∠ABF=α,∠CDE=β,则α与β之间的数量关系正确的是( )
    A.α−β=90∘B.α+β=90∘
    C.α+β=180∘D.α与β没有数量关系
    【答案】A
    【分析】过C作CM∥AB,得到CM∥DE,因此∠ABC=∠BCM,∠MCD=∠EDC=β,由垂直的定义得到∠ABC=90°−β,由邻补角的性质即可得到答案.
    【详解】解:过C作CM∥AB,
    ∵AB∥DE,
    ∴CM∥DE,
    ∴∠ABC=∠BCM,∠MCD=∠EDC=β,
    ∵BC⊥CD,
    ∴∠BCM=90°−∠MCD=90°−β,
    ∴∠ABC=90°−β,
    ∵∠ABC+∠ABF=180°,
    ∴90°−β+α=180°,
    ∴ α−β=90∘ .

    故选:A.
    【点睛】本题考查平行线的性质,关键是过C作CM//AB,得到CM//DE,由平行线的性质来解决问题.
    5.(3分)(2023下·陕西西安·七年级统考期末)如图,直线AB∥CD,点E、F分别是AB、CD上的点(点E在点F的右侧),点M为线段EF上的一点(点M不与点E、F重合),点N为射线FD上的一动点,连接MN,过点M作MQ∥CD,且恰能使得MQ平分∠EMN .若∠BEF=142°,则∠MNF和∠FMN的度数分别为( )

    A.38°,76°B.38°,104°C.36°,142°D.36°,104°
    【答案】B
    【分析】先证AB∥MQ,再根据平行线的性质,角平分线的定义以及平角的定义即可求解.
    【详解】解:∵AB∥CD,MQ∥CD,

    ∴AB∥MQ,
    ∴∠EMQ=180°−∠BEF=38°,
    ∵MQ平分∠EMN,
    ∴∠QMN=∠EMQ=38°,
    ∵MQ∥CD,
    ∴∠MNF=∠QMN=38°,
    ∴∠FMN=180°−∠EMN=180°−38°−38°=104°,
    故选B.
    【点睛】本题考查了平行线的判定和性质、角平分线的定义,熟练掌握平行线的性质,并能进行推理论证是解决问题的关键.
    6.(3分)(2023下·江苏宿迁·七年级统考期末)如图,直线AB∥EF∥CD,BC平分∠ABD,DE平分∠FDC,∠C=50°,∠BDF=30°,则∠FED=( )
    A.20°B.25°C.30°D.35°
    【答案】B
    【分析】根据平行线的性质和角平分线的性质即可求解.
    【详解】解:∵AB∥EF∥CD,∠C=50°,
    ∴∠ABC=∠C=50°,∠ABD+∠BDC=180°,∠FED=∠CDE,
    ∵BC平分∠ABD,
    ∴∠ABD=2∠ABC=100°,
    ∴∠BDC=180°−∠ABD=80°,
    ∵∠BDF=30°,
    ∴∠CDF=∠BDC−∠BDF=50°,
    ∵DE平分∠FDC,
    ∴∠CDE=12∠CDF=25°,则∠FED=25°,
    故选:B.
    【点睛】本题考查平行线的性质、角平分线的定义,熟练掌握平行线的性质是解答的关键.
    7.(3分)(2023下·江苏常州·七年级校考期中)如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是( )

    A.102°B.108°C.124°D.128°
    【答案】A
    【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可.
    【详解】∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠BFE=∠DEF=26°,
    ∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,
    故选A.
    【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.
    8.(3分)(2023下·安徽合肥·七年级统考期末)将含30°角的三角板ABC如图放置,使其三个顶点分别落在三条平行直线上,其中∠ACB=90°,∠CAB=30°,当∠CDB=60°时,图中等于30°的角的个数是( )

    A.3B.4C.5D.6
    【答案】C
    【分析】由平行线的性质得∠DAM=∠CDB=60°,即可求出∠BAM=30°,由b∥c得到∠DBA=∠BAM=30°,求出∠CBD=30°,由a∥b推出∠BCN=∠CBD=30°.
    【详解】解:∵b∥c,
    ∴∠DAM=∠CDB=60°,
    ∵∠BAC=30°,
    ∴∠BAM=∠DAM−∠BAC=30°,
    ∵b∥c,
    ∴∠DBA=∠BAM=30°,
    ∵∠CBA=90°−∠BAC=60°,
    ∴∠CBD=∠CBA−∠DBA=30°,
    ∵a∥b,
    ∴∠BCN=∠CBD=30°,
    ∵图中等于30°的角的个数有5个.
    故选:C.

    【点睛】本题考查平行线的性质,关键是掌握平行线的性质.
    9.(3分)(2023下·浙江·七年级期末)一副直角三角尺叠放如图所示,现将30°的三角尺ABC固定不动,将45°的三角尺BDE绕顶点B逆时针转动,点E始终在直线AB的上方,当两块三角尺至少有一组边互相平行时,则∠ABE所有符合条件的度数为( )
    A.45°,75°,120°,165°B.45°,60°,105°,135°
    C.15°,60°,105°,135°D.30°,60°,90°,120°
    【答案】A
    【分析】分DE∥AB,DE∥AC,BE∥AC,AC∥BD,分别画出图形,根据平行线的性质和三角板的特点求解.
    【详解】解:如图,
    ①DE∥AB,
    ∴∠D+∠ABD=180°
    ∴∠ABD=90°
    ∴∠ABE=45°;
    ②DE∥AC,
    ∵∠D=∠C=90°,
    ∴B,C,D共线,
    ∴∠ABE=∠CBE+∠ABC=180°-45°+30°=165°;
    ③BE∥AC,
    ∴∠C=∠CBE=90°,
    ∴∠ABE=∠ABC+∠CBE=120°;
    ④AC∥BD,
    ∴∠ABD=180°-∠A=120°,
    ∴∠ABE=∠ABD-∠DBE=75°,
    综上:∠ABE的度数为:45°或75°或120°或165°.
    【点睛】本题考查了三角板中的角度计算,平行线的性质,解题的关键是注意分类讨论,做到不重不漏.
    10.(3分)(2023下·江苏宿迁·七年级统考期中)如图,已知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α−β,③β−a,④360°−α−β,∠AEC的度数可能是( )
    A.②③B.①④C.①③④D.①②③④
    【答案】D
    【分析】由题意根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.
    【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,
    ∵∠AOC=∠BAE1+∠AE1C,
    ∴∠AE1C=β-α.
    (2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,
    ∴∠AE2C=α+β.
    (3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,
    ∵∠BAE3=∠BOE3+∠AE3C,
    ∴∠AE3C=α-β.
    (4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
    ∴∠AE4C=360°-α-β.
    (5)(6)当点E在CD的下方时,同理可得∠AEC=α-β或β-α.
    综上所述,∠AEC的度数可能为β-α,α+β,α-β,360°-α-β,即①②③④.
    故选:D.
    【点睛】本题主要考查平行线的性质的运用,解题时注意两直线平行,同位角相等;两直线平行,内错角相等以及分类讨论.
    二.填空题(共6小题,满分18分,每小题3分)
    11.(3分)(2023下·浙江金华·七年级统考期末)如图是路灯维护工程车的工作示意图,工作篮底部与支撑平台平行.若∠1=30∘,则∠2+∠3的度数为 .

    【答案】210∘
    【分析】过∠2顶点做直线l ∥支撑平台,直线l将∠2分成两个角,根据平行的性质即可求解.
    【详解】解:过∠2顶点做直线l ∥支撑平台,
    ∴ l ∥支撑平台∥工作篮底部,
    ∴∠1=∠4=30∘、∠5+∠3=180∘,
    ∴∠4+∠5+∠3=30∘+180∘=210∘,
    ∵∠4+∠5=∠2,
    ∴∠2+∠3=210∘.

    【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.
    12.(3分)(2023上·湖南株洲·七年级统考期末)如图,已知D为三角形ABC中BC边上一点,E为DG边上一点,连接AE,若∠1=60°,∠2=∠C,则∠AEG= .

    【答案】120°
    【分析】根据内错角相等,两直线平行得到BC∥AE,再根据两直线平行,内错角相等可得∠1=∠AED=60°,最后根据邻补角的定义进行计算即可.
    【详解】解:∵∠2=∠C,
    ∴BC∥AE,
    ∴∠1=∠AED=60°,
    ∵∠AED+∠AEG=180°,
    ∵∠AEG=180°−∠AED=180°−60°=120°,
    故答案为:120°.
    【点睛】本题主要考查了平行线的判定与性质、邻补角的定义,熟练掌握平行线的判定与性质是解题的关键.
    13.(3分)(2023下·北京·七年级汇文中学校联考期中)已知直线AB⊥CD,垂足为O,OE在∠BOD内部,∠COE=125°,OF⊥OE于点O,则∠AOF的度数是 .
    【答案】125°或55°
    【分析】根据题意画出图形,分两种情况:当点F在射线OM上,当点F′在射线ON上,然后分别进行计算即可解答.
    【详解】解:如图:
    分两种情况:
    当点F在射线OM上,
    ∵AB⊥CD,OF⊥OE,
    ∴∠AOC=∠EOF=90°,
    ∴∠AOC+∠COF=∠EOF+∠COF,
    ∴∠AOF=∠COE,
    ∵∠COE=125°,
    ∴∠AOF=125°,
    当点F′在射线ON上,
    ∵∠AOF=125°,
    ∴∠AOF′=180°−∠AOF=55°,
    综上所述,∠AOF的度数为125°或55°,
    故答案为:125°或55°.
    【点睛】本题考查了对顶角、邻补角,垂线,根据题目的已知条件画出图形进行分析是解题的关键,同时渗透了数学的分类讨论思想.
    14.(3分)(2023下·山东烟台·六年级统考期末)如图,AC∥ED,AB∥DF,∠EDF=62°,则∠A= .

    【答案】62°
    【分析】由平行线的性质可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,从而得到∠A=∠EDF=62°.
    【详解】解:∵ AC∥ED,
    ∴∠EDF+∠AFD=180°,
    ∵ AB∥DF,
    ∴∠A+∠AFD=180°,
    ∵ ∠EDF=62°,
    ∴∠A=∠EDF=62°,
    故答案为:62°.
    【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.
    15.(3分)(2023下·贵州·七年级校联考期中)如果∠α,∠β两边分别垂直,其中∠α比∠β的2倍少30°,那么∠α= .
    【答案】30°或110°
    【分析】分两种情况,当∠α=∠β时,当∠α+∠β=180°,然后进行计算即可解答,
    【详解】解:设∠β为x°,则∠α=2x−30°,
    分两种情况:
    当∠α=∠β时,如图:
    ∴2x−30=x,
    解得:x=30,
    ∴∠α=30°,
    当∠α+∠β=180°,如图:
    ∴2x−30+x=180,
    解得:x=70,
    ∴∠α=110°
    综上所述:∠α=30°或∠α=110°.
    故答案为:30°或110°.
    【点睛】本题考查了垂线,角的计算,根据题意画出图形,分两种情况讨论是解题的关键.
    16.(3分)(2023下·河南新乡·七年级统考期末)如图,直线AB∥CD,点E,F分别在直线AB,CD上,点P为直线AB与CD间一动点,连接EP,FP,且∠EPF=120°,∠AEP的平分线与∠PFC的平分线交于点Q,则∠EQF的度数为 .

    【答案】60∘或120∘
    【分析】分两种情况讨论,当点P,Q在EF同侧或异侧时,利用角平分线的定义和平行线的性质,分别求解即可.
    【详解】解:分两种情况讨论:
    ①如图1,过点P,Q分别作PH∥AB,QG∥AB,
    ∵AB∥CD,
    ∴QG∥PH∥AB∥CD.
    ∴∠AEP=∠EPH,∠PFC=∠HPF.
    ∴∠AEP+∠CFP=∠EPH+∠FPH=∠EPF=120∘.
    ∵∠AEP的平分线与∠PFC的平分线交于点Q,
    ∴∠AEQ=12∠AEP,∠CFQ=12∠PFC.
    ∴∠AEQ+∠QFC=12∠AEP+∠PFC=60∘,
    ∵QG∥AB∥CD,
    同理可得∠EQF=∠AEQ+∠QFC=60∘;
    ②如图2,过点P,Q分别作PH∥AB,QG∥AB,
    ∵AB∥CD,
    ∴QG∥PH∥AB∥CD.
    ∴∠AEP+∠EPH=180∘,∠HPF+∠CFP=180∘.
    ∵∠EPH+∠HPF=∠EPF=120∘,
    ∴∠AEP+∠CFP=180∘+180∘−120∘=240∘.
    ∵∠AEP的平分线与∠PFC的平分线交于点Q,
    ∴∠AEQ=12∠AEP,∠CFQ=12∠PFC.
    ∴∠AEQ+∠QFC=12∠AEP+∠PFC=120∘.
    ∵QG∥AB∥CD,同①可得∠EQF=∠AEQ+∠QFC=120∘.

    综上所述,∠EQF的度数为60∘或120∘.
    故答案为:60∘或120∘
    【点睛】此题考查了平行线的判定与性质,角平分线的定义,解题的关键是熟练掌握相关基础性质,利用分类讨论的思想求解问题.
    三.解答题(共7小题,满分52分)
    17.(6分)(2023下·吉林松原·七年级统考期末)已知:如图,直线AB与CD相交于点O,OE是∠BOC的平分线,如果∠BOC:∠DOF:∠AOC=1:2:4,求∠EOF的度数.

    【答案】90°
    【分析】设∠BOC=x°,则∠DOF=2x°,∠AOC=4x°,根据∠BOC+∠AOC=180°,得出x+4x=180,可得∠BOC=36°,∠DOF=72°,∠AOC=144°,根据角平分线的定义可得∠BOE=18°,根据平角的定义,由∠EOF=180°−∠DOF−∠COE,即可求解.
    【详解】解:设∠BOC=x°,则∠DOF=2x°,
    由题意得:x+4x=180,
    解得:
    x=36,
    ∴∠BOC=36°,∠DOF=72°,
    ∵OE是∠BOC的平分线,
    ∴∠BOE=∠COE=12∠BOC=18°.
    ∴∠EOF=180°−∠DOF−∠COE
    =180°−72°−18°
    =90°.
    【点睛】本题考查几何图形中角度的计算,平角的定义,角平分线的定义,由相关定义构造方程是解题的关键.
    18.(6分)(2023下·辽宁盘锦·七年级校考期末)如图,放置在水平操场上的篮球架的横梁EF始终平行于AB,主柱AD垂直于地面,EF与上拉杆CF形成的角度为∠F,且∠F=150°,可以通过调整CF和后拉杆BC的位置来调整篮筐的高度,若通过调整使EF上升到GH的位置,且GH∥AB,∠CDB=35°时,点H,D,B在同一直线上,求∠H的度数.

    【答案】115°
    【分析】过点D作DI∥EF,可得∠FDI=30°,再由∠FDH=∠CDB=35°,可得∠IDH=65°,然后根据EF∥AB,GH∥AB,DI∥EF,可得DI∥GH,即可求解.
    【详解】解:过点D作DI∥EF,

    ∴∠F+∠FDI=180°,
    ∵∠F=150°,
    ∴∠FDI=180°−∠F=30°,
    又∵∠FDH=∠CDB=35°,
    ∴∠IDH=∠FDI+∠FDH=30°+35°=65°,
    ∵EF∥AB,GH∥AB,DI∥EF,
    ∴DI∥GH,
    ∴∠H+∠IDH=180°,
    ∴∠H=180°−∠IDH=180°−65°=115°.
    【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.
    19.(8分)(2023下·辽宁盘锦·七年级校考期末)完成下列证明:
    已知:∠B+∠CDE=180°,∠1=∠2,求证:AB∥CD.
    【答案】见解析
    【分析】根据平行线的性质与判定定理即可作出解决.
    【详解】证明:∵∠1=∠2,
    ∴180°−∠1=180°−∠2,
    即∠CFD=∠EDF,
    ∴BC∥ED,
    ∴∠CDE+∠C=180°,
    ∵∠B+∠CDE=180°,
    ∴∠B=∠C,
    ∴AB∥CD.
    【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定和性质定理是解答此题的关键.
    20.(8分)(2023下·辽宁盘锦·七年级校考期末)如图,已知△ABC,∠C=90°,∠CME+∠EFN=180°,∠MEB=∠FNB.

    (1)判断EF和BC的位置关系,并说明理由;
    (2)若EF平分∠MEB,∠FNB=54°,求∠AME和∠NFB的度数.
    【答案】(1)EF⊥BC,理由见详解
    (2)∠AME=27°,∠BFN=63°
    【分析】(1)EF⊥BC,理由如下:根据平行线的判定,由∠MEB=∠FNB,得ME∥FN,再根据平行线的性质,得∠MEF=∠EFN,再根据平行线的判定及性质,垂直的定义即可解答;
    (2)先根据角平分线的定义,得∠MEF=∠BEF=12∠MEN,再根据平行线的性质及垂直的定义即可求解.
    【详解】(1)解:EF⊥BC,理由如下:
    ∵∠MEB=∠FNB,
    ∴ME∥FN,
    ∴∠MEF=∠EFN,
    ∵∠CME+∠EFN=180°,
    ∴∠CME+∠MEF=180°,
    ∴AC∥EF,
    ∵∠C=90°,即AC⊥BC,
    ∴EF⊥BC
    (2)解:∵ME∥FN,
    ∴∠MEB=∠FNB=54°,
    ∵EF平分∠MEB,
    ∴∠MEF=∠BEF=12∠MEN=27°,
    ∵AC∥EF,
    ∴∠AME=∠MEF=27°,
    ∵ME∥FN,
    ∴∠EFN=∠MEF=27°,
    ∵EF⊥BC,
    ∴∠EFB=90°,
    ∴∠BFN=∠EFB−∠EFN=90°−27°=63°.
    【点睛】本题考查了平行线的判定及性质,垂直的定义,熟练掌握平行线的判定及性质是本题的关键.
    21.(8分)(2023上·江苏盐城·七年级统考期末)已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
    (1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
    (2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
    (3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
    【答案】(1)60,75;(2)152秒;(3)3或12或21或30
    【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
    (2)由题意先根据α=60°,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
    (3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
    【详解】解:(1)∵∠BOE=90°,
    ∴∠AOE=90°,
    ∵∠AOC=α=30°,
    ∴∠EOC=90°-30°=60°,
    ∠AOD=180°-30°=150°,
    ∵OF平分∠AOD,
    ∴∠FOD=12∠AOD=12×150°=75°;
    故答案为:60,75;
    (2)当α=60°,∠EOF=90°+60°=150°.
    设当射线OE′与射线OF′重合时至少需要t秒,
    可得12t+8t=150,解得:t=152;
    答:当射线OE′与射线OF′重合时至少需要152秒;
    (3)设射线OE′转动的时间为t秒,
    由题意得:12t+8t=150−90或12t+8t=150+90或8t+12t=360+150−90或12t+8t=360+150+90,
    解得:t=3或12或21或30.
    答:射线OE′转动的时间为3或12或21或30秒.
    【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
    22.(8分)(2023下·浙江杭州·七年级统考期末)如图,直线CD,EF分别交直线AB于点G,H,射线GI,HJ分别在∠CGB和∠EHB的内部,且∠CGB=2∠EHB.

    (1)若∠CGB和∠EHB互补.
    ①求∠EHB的度数;
    ②当∠CGI=2∠IGB,且GI∥HJ时,求∠EHJ的度数;
    (2)设∠CGI=m∠IGB,∠EHJ=n∠JHB.若GI∥HJ,求m,n满足的等量关系.
    【答案】(1)①60°;②20°
    (2)m=2n+1
    【分析】(1)①根据∠CGB和∠EHB互补,∠CGB=2∠EHB,即可求解;②先求出∠IGB=40°,由平行线的性质可得∠JHB=∠IGB=40°,再结合①中结论可得∠EHJ的度数;
    (2)设∠JHB=∠IGB=α,可得∠CGB=∠CGI+∠IGB=m+1α,∠EHB=∠EHJ+∠JHB=n+1α,再结合∠CGB=2∠EHB即可求解.
    【详解】(1)解:①∵ ∠CGB和∠EHB互补,
    ∴ ∠CGB+∠EHB=180°.
    ∵ ∠CGB=2∠EHB,
    ∴ 2∠EHB+∠EHB=180°,
    ∴ ∠EHB=60°;
    ②由①得∠EHB=60°,
    ∴ ∠CGB=2∠EHB=120°,
    ∴ ∠CGI+∠IGB=120°,
    又∵ ∠CGI=2∠IGB,
    ∴ 2∠IGB+∠IGB=120°,
    ∴ ∠IGB=40°.
    ∵ GI∥HJ,
    ∴ ∠JHB=∠IGB=40°,
    ∴ ∠EHJ =∠EHB−∠JHB=60°−40°=20°;
    (2)解:∵ GI∥HJ,
    ∴ ∠JHB=∠IGB.
    设∠JHB=∠IGB=α,
    ∴ ∠CGI=m∠IGB=mα,∠EHJ=n∠JHB=nα,
    ∴ ∠CGB=∠CGI+∠IGB=mα+α=m+1α,
    ∠EHB=∠EHJ+∠JHB=nα+α=n+1α,
    又∵ ∠CGB=2∠EHB,
    ∴ m+1α =2n+1α,
    ∴ m+1=2n+1,
    ∴ m=2n+1,
    即m,n满足的等量关系为m=2n+1.
    【点睛】本题考查平行线的性质,角的和差关系,互补角的关系等,解题的关键是掌握平行线的性质.
    23.(8分)(2023下·浙江宁波·七年级统考期末)已知直线l1∥l2,l3和l1,l2分别交于C,D点,点A,B分别在线l1,l2上,且位于l3的左侧,点P在直线l3上,且不和点C,D重合.
    (1)如图1,点P在线段CD上,∠1=25°,∠2=40°,求∠APB的度数.
    (2)如图2,当点P在直线l3上运动时,试判断∠APB,∠1,∠2的数量关系,直接写出结果,不需要说明理由.
    【答案】(1)65°
    (2)当P在l1的上方时,∠2=∠1+∠APB,当P在线段CD上时,∠APB=∠1+∠2;当P在l2的下方时,∠1=∠2+∠APB
    【分析】(1)过点P作PE∥l1,根据l1∥l2可知PE∥l2,故可得出∠1=∠APE,∠2=∠BPE.再由∠APB=∠APE+∠BPE即可得出结论;
    (2)分三种情况讨论:当P在l1的上方时,当P在线段CD上时,由(1)可得:∠APB=∠1+∠2;当P在l2的下方时,过P作PE∥AC,依据l1∥l2,可得PE∥l2,再利用平行线的性质可得结论.
    【详解】(1)证明:如图1,过点P作PE∥l1,
    ∵l1∥l2,
    ∴PE∥l2,
    ∴∠1=∠APE,∠2=∠BPE.
    又∵∠APB=∠APE+∠BPE,
    ∴∠APB=∠1+∠2
    ∵∠1=25°,∠2=40°,
    ∴∠APB=20°+45°=65°;
    (2)解:∠2=∠1+∠APB.
    理由如下:当P在l1的上方时,如图2,过P作PE∥AC,
    ∵l1∥l2,
    ∴PE∥l2,
    ∴∠2=∠BPE,∠1=∠APE,
    ∵∠BPE=∠APE+∠APB,
    ∴∠2=∠1+∠APB.
    当P在线段CD上时,由(1)可得:∠APB=∠1+∠2;
    当P在l2的下方时,如图2,过P作PE∥AC,
    ∵l1∥l2,
    ∴PE∥l2,
    ∴∠2=∠BPE,∠1=∠APE,
    ∵∠APE=∠BPE+∠APB,
    ∴∠1=∠2+∠APB.
    【点睛】本题考查的是平行线的性质,平行公理的应用,根据题意作出辅助线,构造出平行线是解答此题的关键.
    相关试卷

    中考数学一轮复习:专题12.7 整式的乘除章末拔尖卷(华东师大版)(解析版): 这是一份中考数学一轮复习:专题12.7 整式的乘除章末拔尖卷(华东师大版)(解析版),共21页。

    中考数学一轮复习:专题11.5 数的开方章末拔尖卷(华东师大版)(解析版): 这是一份中考数学一轮复习:专题11.5 数的开方章末拔尖卷(华东师大版)(解析版),共17页。

    中考数学一轮复习:专题15.2 数据的收集与表示章末拔尖卷(华东师大版)(解析版): 这是一份中考数学一轮复习:专题15.2 数据的收集与表示章末拔尖卷(华东师大版)(解析版),共17页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map