所属成套资源:中考数学一轮复习之举一反三(华东师大版)
中考数学一轮复习:专题22.8 一元二次方程章末拔尖卷(华东师大版)(解析版)
展开
这是一份中考数学一轮复习:专题22.8 一元二次方程章末拔尖卷(华东师大版)(解析版),共19页。
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)(2023春·安徽安庆·九年级安徽省安庆市外国语学校校考期末)下列一元二次方程中,有两个相等的实数根的是( )
A.x2−3x−1=0B.2x2−5x+2=0
C.x2−4x+4=0D.4x−1x+3=−5
【答案】C
【分析】逐项分析四个选项中一元二次方程根的判别式的符号,由此即可得出结论.
【详解】解:A.在x2−3x−1=0中,Δ=−32−4×1×−1=9+4=13>0,所以该方程有两个不相等的实数根,故A不符合题意;
B.在2x2−5x+2=0中,Δ=−52−4×2×2=25−16=9>0,所以该方程有两个不相等的实数根,故B不符合题意;
C.在x2−4x+4=0中,Δ=−42−4×1×4=16−16=0,所以该方程有两个相等的实数根,故C符合题意;
D.将4x−1x+3=−5整理得:4x2+8x−7=0,Δ=82−4×4×−7=64+112=176>0,所以该方程有两个相等的实数根,故D不符合题意,
故选:C.
【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax2+bx+c=0a≠0的根与Δ=b2−4ac有如下关系:①Δ>0,方程有两个不相等的实数根,②Δ=0,方程有两个相等的实数根,③Δ−1时,Δ>0,方程有两个不相等的实根,故①正确,
②当a>0时,两根之积=−a−1,
∴方程的两个实根不可能都小于1,故③正确,
④当a>3时,由(3)可知,两个实根一个大于3,另一个小于3,故④正确,
故选:C.
【点睛】本题主要考查了一元二次方程根与系数的关系,根的判别式,一元二次方程的求根公式,熟练掌握一元二次方程的相关知识是解题的关键.
9.(3分)(2023春·福建厦门·九年级厦门市莲花中学校考期中)已知关于x的方程x2﹣(a+2b)x+1=0有两个相等实数根.若在直角坐标系中,点P在直线l:y=﹣x+12上,点Q(12a,b)在直线l下方,则PQ的最小值为( )
A.342B.24C.12D.64
【答案】A
【分析】先利用根判别式得到△=(a+2b)2﹣4=0,则a+2b=2或a+2b=-2,即点Q的坐标为(1-b,b)或(-1-b,b),如图:当点Q在直线y=-x-1上, EF为两直线的距离,最后求出EF得到PQ的最小值即可
【详解】解:∵关于x的方程x2﹣(a+2b)x+1=0有两个相等实数根,
∴△=(a+2b)2﹣4=0,
∴a+2b=2或a+2b=﹣2,
∵点Q(12a,b),即Q(1﹣b,b)或(﹣1﹣b,b),
∴点Q所在的直线为y=﹣x+1或y=﹣x﹣1,
∵点Q(12a,b)在直线y=﹣x+12的下方,
∴点Q在直线y=﹣x﹣1上,如图,EF为两直线的距离,
∵OE=24,OF=22,
∴EF=324,
∴PQ的最小值为324.
故选:A.
【点睛】本题主要考查了根的判别式和垂线段最短,掌握一元二次方程的根的判别式△与根的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△−1和2x2+2x−t−3=0x≤−1都必须有解,
∴−t−2≥02t+7≥0,
∴−72≤t≤−2,
(1)当−t−2=0时,即t=−2时,方程x2=−t−2x>−1只有一个根x=0,
∵当t=−2时,2t+7=3,
∴−1+32>0,−1−32
相关试卷
这是一份中考数学一轮复习:专题12.7 整式的乘除章末拔尖卷(华东师大版)(解析版),共21页。
这是一份中考数学一轮复习:专题11.5 数的开方章末拔尖卷(华东师大版)(解析版),共17页。
这是一份中考数学一轮复习:专题5.6 相交线与平行线章末拔尖卷(华东师大版)(解析版),共25页。