|试卷下载
终身会员
搜索
    上传资料 赚现金
    最新高考数学二轮复习(新高考)【专题突破精练】 第12讲 零点问题、隐零点问题与零点赋值问题
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第12讲 零点问题、隐零点问题与零点赋值问题(原卷版).docx
    • 解析
      第12讲 零点问题、隐零点问题与零点赋值问题(解析版).docx
    最新高考数学二轮复习(新高考)【专题突破精练】  第12讲 零点问题、隐零点问题与零点赋值问题01
    最新高考数学二轮复习(新高考)【专题突破精练】  第12讲 零点问题、隐零点问题与零点赋值问题02
    最新高考数学二轮复习(新高考)【专题突破精练】  第12讲 零点问题、隐零点问题与零点赋值问题03
    最新高考数学二轮复习(新高考)【专题突破精练】  第12讲 零点问题、隐零点问题与零点赋值问题01
    最新高考数学二轮复习(新高考)【专题突破精练】  第12讲 零点问题、隐零点问题与零点赋值问题02
    最新高考数学二轮复习(新高考)【专题突破精练】  第12讲 零点问题、隐零点问题与零点赋值问题03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新高考数学二轮复习(新高考)【专题突破精练】 第12讲 零点问题、隐零点问题与零点赋值问题

    展开
    这是一份最新高考数学二轮复习(新高考)【专题突破精练】 第12讲 零点问题、隐零点问题与零点赋值问题,文件包含第12讲零点问题隐零点问题与零点赋值问题原卷版docx、第12讲零点问题隐零点问题与零点赋值问题解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    1、明确模拟练习的目的。不但检测知识的全面性、方法的熟练性和运算的准确性,更是训练书写规范,表述准确的过程。
    2、查漏补缺,以“错”纠错。每过一段时间,就把“错题笔记”或标记错题的试卷有侧重的看一下。查漏补缺的过程也就是反思的过程,逐渐实现保强攻弱的目标。
    3、严格有规律地进行限时训练。特别是强化对解答选择题、填空题的限时训练,将平时考试当作高考,严格按时完成,并在速度体验中提高正确率。
    4、保证常规题型的坚持训练。做到百无一失,对学有余力的学生,可适当拓展高考中难点的训练。
    5、注重题后反思总结。出现问题不可怕,可怕的是不知道问题的存在,在复习中出现的问题越多,说明你距离成功越近,及时处理问题,争取“问题不过夜”。
    6、重视每次模拟考试的临考前状态的调整及考后心理的调整。以平和的心态面对高考。
    第12讲 零点问题、隐零点问题与零点赋值问题
    【典型例题】
    例1.已知函数.
    (1)当时,求曲线在点,处的切线方程;
    (2)若在区间,各恰有一个零点,求的取值范围.
    例2.已知.
    (1)当时,求曲线在点,处的切线方程;
    (2)当时,研究函数在区间上的单调性;
    (3)是否存在实数使得函数在区间和上各恰有一个零点?若存在,请求出实数的取值范围,若不存在,请说明理由.
    例3.已知函数,且.
    (1)求;
    (2)证明:存在唯一的极小值点,且.
    例4.已知函数,曲线在点,(1)处的切线方程为.
    (1)求,的值;
    (2)证明函数存在唯一的极大值点,且.
    例5.已知函数,为的导函数,证明:
    (1)在区间存在唯一极大值点;
    (2)在区间存在唯一极小值点;
    (3)有且只有一个零点.
    例6.已知函数,,其中.
    (Ⅰ)求函数的单调区间;
    (Ⅱ)若曲线在点,处的切线与曲线在点,处的切线平行,证明:;
    (Ⅲ)证明当时,存在直线,使是曲线的切线,也是曲线的切线.
    例7.已知,函数.
    (1)求曲线在点,处的切线方程;
    (2)证明函数存在唯一的极值点;
    (3)若,使得对任意的恒成立,求实数的取值范围.
    例8.已知函数,且.
    (Ⅰ)求.
    (Ⅱ)证明:存在唯一的极大值点,且.
    例9.已知实数,函数.
    (1)若函数在中有极值,求实数的取值范围;
    (2)若函数有唯一的零点,求证:.
    (参考数据:,.
    【同步练习】
    一.解答题
    1.已知函数,其中为非零常数.
    (1)若函数在上单调递增,求的取值范围;
    (2)设,且,证明:当时,函数在上恰有两个极值点.
    2.已知函数,其中为大于零的常数.
    (1)若函数在区间,内单调递增,求的取值范围;
    (2)求函数在区间,上的最小值;
    (3)对于函数,若存在,,使不等式成立,求实数的取值范围.
    3.设,已知函数,.
    (Ⅰ)当时,证明:当时,;
    (Ⅱ)当时,证明:函数有唯一零点.
    4.设函数,其中为自然对数的底数.
    (1)若,求的单调区间;
    (2)若,求证:无零点.
    5.设函数,其中为自然对数的底数.
    (1)若,求的单调区间;
    (2)若,,求证:无零点.
    6.已知函数.
    (1)若函数,求函数的单调区间;
    (2)若直线为曲线在点,处的切线,直线与曲线相交于点,,且,求实数的取值范围.
    7.已知函数
    (1)若在区间上存在极值,求实数的范围;
    (2)若在区间上的极小值等于0,求实数的值;
    (3)令,.曲线与直线交于,,,两点,求证:.
    8.设函数,曲线在处的切线与轴交于点.
    (1)求;
    (2)若当,时,,记符合条件的的最大整数值、最小整数值分别为,,求.
    注:为自然对数的底数.
    9.已知函数,.
    (1)当时,证明:;
    (2)设函数,若有极值,且极值为正数,求实数的取值范围.
    10.已知曲线(其中为自然对数的底数)在处切线方程为.
    (Ⅰ)求,值;
    (Ⅱ)证明:存在唯一的极大值点,且.
    11.已知曲线(其中为自然对数的底数)在处的切线方程为.
    (1)求,值;
    (2)证明:存在唯一的极大值点,且.
    12.设函数
    (1)当时,求函数在点,(1)处的切线方程;
    (2)若函数存在两个极值点,
    ①求实数的范围;
    ②证明:.
    13.已知函数.
    (1)当时,求函数,,的最大值;
    (2)求函数的单调区间;
    (3)设函数存在两个极值点,,,且,若,求证:.
    14.已知函数,恰好有两个极值点,.
    (Ⅰ)求证:存在实数,使;
    (Ⅱ)求证:.
    15.已知函数,其中.
    (1)求函数的单调区间.
    (2)若函数有两个极值点、,且,证明:.
    16.已知函数,其中为自然对数的底数,
    (1)若对,恒成立,求实数的值;
    (2)在(1)的条件下,
    (ⅰ)证明:有三个根,,;
    (ⅱ)设,请从以下不等式中任选一个进行证明:
    ①;
    ②.
    .参考数据:,.
    17.设函数,为的导函数.
    (Ⅰ)求的单调区间;
    (Ⅱ)当,时,证明;
    (Ⅲ)设为函数在区间,内的零点,其中,证明:.
    18.已知,.
    (1)若函数,,求的单调区间;
    (2)若过点能作函数的两条切线,求实数的取值范围;
    (3)设,且,求证:.
    19.设为正实数,函数存在零点,,且存在极值点与.
    (1)当时,求曲线在,(1)处的切线方程;
    (2)求的取值范围,并证明:.
    20.已知函数.
    (1)当时,判断并证明函数的奇偶性;
    (2)设.
    ①求实数的取值范围,并将表示为的函数;
    ②若,均有,求实数的取值范围.
    21.已知函数.
    (1)当,时,判断函数在区间内的单调性;
    (2)已知曲线在点,处的切线方程为.判断方程在区间上解的个数,并说明理由.
    22.已知函数.
    (Ⅰ)时,试判断的单调性并给予证明;
    (Ⅱ)若有两个极值点,.
    求实数的取值范围;
    证明:.(注是自然对数的底数)
    23.已知函数有两个不同的极值点,.
    (Ⅰ)求实数的取值范围;
    (Ⅱ)记函数的导函数为.若函数有两个不同的零点,,函数有两个不同的零点,,证明:
    (ⅰ);
    (ⅱ).
    (注是自然对数的底数)
    24.已知函数.
    (1)讨论函数的单调性;
    (2)当时,判断函数的零点个数.
    25.已知函数,.
    (1)讨论的单调性;
    (2)证明:当时,;
    (3)若函数有两个零点,,比较与0的大小,并证明你的结论.
    26.已知函数.
    (1)讨论函数的单调性;
    (2)若,证明.
    27.已知函数.
    (1)讨论函数的单调性;
    (2)若,,证明:.
    28.已知函数在时取到极大值.
    (Ⅰ)求实数,的值;
    (Ⅱ)记.设函数,若函数在上为增函数,求实数的取值范围.
    29.已知函数.
    (Ⅰ)若,求证:当时,;
    (Ⅱ)讨论方程的根的个数.
    30.已知函数,.
    (1)当时,求函数 的极值;
    (2)若存在与函数, 的图象都相切的直线,求实数的取值范围.
    31.已知函数,为的导数.证明:
    (1)在区间存在唯一极大值点;
    (2)有且仅有2个零点.
    相关试卷

    专题七 复合函数的零点问题-最新高考数学之函数的零点问题专项突破(全国通用): 这是一份专题七 复合函数的零点问题-最新高考数学之函数的零点问题专项突破(全国通用)

    专题五 与零点相关的等式问题-最新高考数学之函数的零点问题专项突破(全国通用): 这是一份专题五 与零点相关的等式问题-最新高考数学之函数的零点问题专项突破(全国通用)

    专题30:函数的零点、隐零点问题-2023届高考数学一轮复习精讲精练(新高考专用): 这是一份专题30:函数的零点、隐零点问题-2023届高考数学一轮复习精讲精练(新高考专用),文件包含专题30函数的零点隐零点问题-2023届高考数学一轮复习精讲精练新高考专用解析版docx、专题30函数的零点隐零点问题-2023届高考数学一轮复习精讲精练新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        最新高考数学二轮复习(新高考)【专题突破精练】 第12讲 零点问题、隐零点问题与零点赋值问题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map