最新高考数学二轮复习讲义重难点突破篇 专题21 利用传统方法求线线角、线面角、二面角与距离的问题
展开1、明确模拟练习的目的。不但检测知识的全面性、方法的熟练性和运算的准确性,更是训练书写规范,表述准确的过程。
2、查漏补缺,以“错”纠错。每过一段时间,就把“错题笔记”或标记错题的试卷有侧重的看一下。查漏补缺的过程也就是反思的过程,逐渐实现保强攻弱的目标。
3、严格有规律地进行限时训练。特别是强化对解答选择题、填空题的限时训练,将平时考试当作高考,严格按时完成,并在速度体验中提高正确率。
4、保证常规题型的坚持训练。做到百无一失,对学有余力的学生,可适当拓展高考中难点的训练。
5、注重题后反思总结。出现问题不可怕,可怕的是不知道问题的存在,在复习中出现的问题越多,说明你距离成功越近,及时处理问题,争取“问题不过夜”。
6、重视每次模拟考试的临考前状态的调整及考后心理的调整。以平和的心态面对高考。
专题21 利用传统方法求线线角、线面角、二面角与距离的问题
【考点预测】
知识点1:线与线的夹角
(1)位置关系的分类:
(2)异面直线所成的角
①定义:设是两条异面直线,经过空间任一点作直线,把与所成的锐角(或直角)叫做异面直线与所成的角(或夹角).
②范围:
= 3 \* GB3 ③求法:平移法:将异面直线平移到同一平面内,放在同一三角形内解三角形.
知识点2:线与面的夹角
①定义:平面上的一条斜线与它在平面的射影所成的锐角即为斜线与平面的线面角.
②范围:
= 3 \* GB3 ③求法:
常规法:过平面外一点做平面,交平面于点;连接,则即为直线与平面的夹角.接下来在中解三角形.即(其中即点到面的距离,可以采用等体积法求,斜线长即为线段的长度);
知识点3:二面角
(1)二面角定义:从一条直线出发的两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,这两个平面称为二面角的面.(二面角或者是二面角)
(2)二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角;范围.
(3)二面角的求法
法一:定义法在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角,如图在二面角的棱上任取一点,以为垂足,分别在半平面和内作垂直于棱的射线和,则射线和所成的角称为二面角的平面角(当然两条垂线的垂足点可以不相同,那求二面角就相当于求两条异面直线的夹角即可).
法二:三垂线法
在面或面内找一合适的点,作于,过作于,则为斜线在面内的射影,为二面角的平面角.如图1,具体步骤:
①找点做面的垂线;即过点,作于;
②过点(与①中是同一个点)做交线的垂线;即过作于,连接;
③计算:为二面角的平面角,在中解三角形.
图1 图2 图3
法三:射影面积法
凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(,如图2)求出二面角的大小;
法四:补棱法
当构成二面角的两个半平面没有明确交线时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题.当二平面没有明确的交线时,也可直接用法三的摄影面积法解题.
法五:垂面法
由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.例如:过二面角内一点作于,作于,面交棱于点,则就是二面角的平面角.如图3.此法实际应用中的比较少,此处就不一一举例分析了.
知识点4:空间中的距离
求点到面的距离转化为三棱锥等体积法求解.
【题型归纳目录】
题型一:异面直线所成角
题型二:线面角
题型三:二面角
题型四:距离问题
【典例例题】
题型一:异面直线所成角
例1.(2022·吉林·长春市第二实验中学高三阶段练习)如图,在棱长为2的正方体中,分别是的中点,则异面直线与所成的角为( )
A.B.C.D.
例2.(2022·四川内江·模拟预测(理))如图,在直三棱柱中,面,,则直线与直线夹角的余弦值为( )
A.B.C.D.
例3.(2022·全国·模拟预测)已知正方体中,E,G分别为,的中点,则直线,CE所成角的余弦值为( )
A.B.C.D.
例4.(2022·全国·模拟预测)在如图所示的圆锥中,底面直径为,母线长为4,点C是底面直径AB所对弧的中点,点D是母线PB的中点,则异面直线AB与CD所成角的余弦值为( )
A.B.C.D.
例5.(2020·黑龙江·哈师大附中高三期末(文))如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,M、N分别是BB1和B1C1的中点,则直线AM与CN所成角的余弦值等于( )
A.B.C.D.
例6.(2023·全国·高三专题练习(文))如图,在四面体ABCD中,平面BCD,,P为AC的中点,则直线BP与AD所成的角为( )
A.B.C.D.
例7.(2022·河南省杞县高中模拟预测(文))如图,在三棱柱中,平面ABC,,,,则异面直线与所成角的余弦值为( )
A.B.C.D.
例8.(2022·全国·高三专题练习)在正方体ABCD﹣A1B1C1D1中,过点C做直线l,使得直线l与直线BA1和B1D1所成的角均为,则这样的直线l( )
A.不存在B.2条
C.4条D.无数条
例9.(2022·湖南·长沙一中高三开学考试)已知点A为圆台O1O2下底面圆O2的圆周上一点,S为上底面圆O1的圆周上一点,且SO1=1,O1O2=,O2A=2,记直线SA与直线O1O2所成角为,则( )
A.B.C.D.
例10.(2022·湖北武汉·模拟预测)已知异面直线,的夹角为,若过空间中一点,作与两异面直线夹角均为的直线可以作4条,则的取值范围是______.
例11.(2022·江苏常州·模拟预测)在三棱锥中,已知平面,,若,,则与所成角的余弦值为___________.
题型二:线面角
例12.(2022·福建·三明一中模拟预测)已知正方体中,,点E为平面内的动点,设直线与平面所成的角为,若,则点E的轨迹所围成的面积为___________.
例13.(2022·全国·模拟预测(理))如图,在三棱台中,平面,,,,则与平面所成的角为( )
A.B.C.D.
例14.(2022·河南安阳·模拟预测(理))如图,在三棱锥P-ABC中,底面ABC是直角三角形,AC=BC=2,PB=PC,D为AB的中点.
(1)证明:BC⊥PD;
(2)若AC⊥PB,PA=3,求直线PA与平面PBC所成的角的正弦值.
例15.(2022·河南安阳·模拟预测(理))如图,在四面体ABCD中,,,E为BD的中点,F为AC上一点.
(1)求证:平面平面BDF;
(2)若,,,求直线BF与平面ACD所成角的正弦值的最大值.
例16.(2022·吉林·长春市第二实验中学高三阶段练习)如图,已知四棱锥中,平面,且.
(1)求证:平面;
(2)当直线与底面所成的角都为,且时,求出多面体的体积.
例17.(2022·全国·高三专题练习(文))已知正三棱柱中,,是的中点.
(1)求证:平面;
(2)点是直线上的一点,当与平面所成的角的正切值为时,求三棱锥的体积.
例18.(2022·四川省泸县第二中学模拟预测(文))如图,在四棱锥中,底面ABCD为矩形,为等腰直角三角形,,,F是BC的中点.
(1)在AD上是否存在点E,使得平面平面,若存在,求出点E的位置;若不存在,请说明理由.
(2)为等边三角形,在(1)的条件下,求直线SE与平面SBC所成角的正弦值.
例19.(2022·江苏南通·模拟预测)如图,在矩形ABCD中,AB=2AD=4,M,N分别是AB和CD的中点,P是BM的中点.将矩形AMND沿MN折起,形成多面体AMB-DNC.
(1)证明:BD平面ANP;
(2)若二面角A-MN-B大小为120°,求直线AP与平面ABCD所成角的正弦值.
题型三:二面角
例20.(2023·河北·高三阶段练习)如图,为圆柱的轴截面,是圆柱上异于的母线.
(1)证明:平面;
(2)若,当三棱锥的体积最大时,求二面角的正弦值.
例21.(2023·全国·高三专题练习(理))如图,在三棱锥中,,,O为AC的中点.
(1)证明:PO⊥平面ABC;
(2)若点M在棱BC上,且PM与面ABC所成角的正切值为,求二面角的平面角的余弦值.
例22.(2022·广东·大埔县虎山中学高三阶段练习)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求:二面角CPBA的正切值.
例23.(2022·北京·景山学校模拟预测)如图,正三棱柱中,E,F分别是棱,上的点,平面平面,M是AB的中点.
(1)证明:平面BEF;
(2)若,求平面BEF与平面ABC夹角的大小.
例24.(2022·湖南·雅礼中学二模)如图,在正方体中,点在线段上,,点为线段上的动点.
(1)若平面,求的值;
(2)当为中点时,求二面角的正切值.
例25.(2022·天津·耀华中学一模)如图,在四棱锥中,平面平面,,,,,点为的中点.
(1)求证:平面;
(2)求平面与平面夹角的正弦值;
例26.(2022·浙江·海宁中学模拟预测)如图所示,在四边形ABCD中,,,现将沿BD折起,使得点A到E的位置.
(1)试在BC边上确定一点F,使得;
(2)若平面平面BCD,求二面角所成角的正切值.
例27.(2022·湖北武汉·模拟预测)如图,在三棱锥中,平面平面,,,D,E分别为,中点,且.
(1)求的值;
(2)若,求二面角的余弦值.
例28.(2022·陕西·西北工业大学附属中学二模(理))在如图所示的圆锥中,、、是该圆锥的三条不同母线,、分别为、的中点,圆锥的高为,底面半径为,,且圆锥的体积为.
(1)求证:直线平行于圆锥的底面;
(2)若三条母线、、两两夹角相等,求平面与圆锥底面的夹角的余弦值.
例29.(2022·天津河北·二模)如图,四边形ABCD是边长为2的菱形,,四边形PACQ是矩形,,且平面平面ABCD.
(1)求直线BP与平面PACQ所成角的正弦值;
(2)求平面BPQ与平面DPQ的夹角的大小;
例30.(2021·江苏苏州·高三阶段练习)已知四棱锥的底面是边长为2的正方形,且平面平面.
(1)证明:;
(2)若点Q到平面的距离为2,记二面角的正切值为m,求的最小值.
题型四:距离问题
例31.(2022·四川广安·模拟预测(文))如图,四棱锥中,底面ABCD为直角梯形,其中,,面面ABCD,且,点M在棱AE上.
(1)若,求证:平面BDM.
(2)当平面MBC时,求点E到平面BDM的距离.
例32.(2022·全国·模拟预测(文))如图,在三棱锥中,平面平面,,,且点在以点为圆心为直径的半圆上.
(1)求证:;
(2)若,且与平面所成角为,求点到平面的距离.
例33.(2022·河南安阳·模拟预测(文))如图,在三棱锥中,底面ABC是直角三角形,,,D为AB的中点.
(1)证明:;
(2)若,,求点A到平面PDC的距离.
例34.(2022·全国·高三专题练习)如图,在直棱柱中,底面是直角梯形,,,点P在面上,过点P和棱的平面把直棱柱分成体积相等的两部分.
(1)求截面与直棱柱的侧面所成角的正切值;
(2)求棱到截面的距离.
例35.(2021·湖南师大附中高三阶段练习)如图,已知为等边三角形,D,E分别为,边的中点,把沿折起,使点A到达点P,平面平面,若.
(1)求与平面所成角的正弦值;
(2)求直线到平面的距离.
例36.(2022·黑龙江齐齐哈尔·三模(文))如图所示的斜三棱柱中,是正方形,且点在平面上的射影恰是AB的中点H,M是的中点.
(1)判断HM与面的关系,并证明你的结论;
(2)若,,求斜三棱柱两底面间的距离.
例37.(2023·全国·高三专题练习)如图,在直三棱柱ABC—中,AB=1,;点D、E分别在上,且,四棱锥与直三棱柱的体积之比为3:5.求异面直线DE与的距离.
例38.(2022·上海市实验学校模拟预测)如图,已知正三棱锥P-ABC的侧棱长为2,侧棱与底面所成角大小为60°.
(1)求此正三棱锥体积;
(2)求异面直线PA与BC的距离.
例39.(2020·全国·高三专题练习(文))如图,四棱锥中,底面为矩形,底面,,,点是棱的中点.直线与平面的距离为( )
A.B.C.D.
例40.(2020·全国·高三专题练习(文))用六个完全相同的正方形围成的立体图形叫正六面体.已知正六面体的棱长为,则平面与平面间的距离为( )
A.B.C.D.
重难点突破02 利用传统方法求线线角、线面角、二面角与距离(四大题型)-2024年高考数学一轮复习(新教材新高考): 这是一份重难点突破02 利用传统方法求线线角、线面角、二面角与距离(四大题型)-2024年高考数学一轮复习(新教材新高考),文件包含重难点突破02利用传统方法求线线角线面角二面角与距离四大题型原卷版docx、重难点突破02利用传统方法求线线角线面角二面角与距离四大题型解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。
【讲通练透】重难点突破02 利用传统方法求线线角、线面角、二面角与距离(四大题型)-2024年高考数学重难点突破精讲: 这是一份【讲通练透】重难点突破02 利用传统方法求线线角、线面角、二面角与距离(四大题型)-2024年高考数学重难点突破精讲,文件包含重难点突破02利用传统方法求线线角线面角二面角与距离四大题型原卷版docx、重难点突破02利用传统方法求线线角线面角二面角与距离四大题型解析版docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。
高考数学二轮复习 利用传统方法求线线角、线面角、二面角与距离的问题(原卷版+解析版): 这是一份高考数学二轮复习 利用传统方法求线线角、线面角、二面角与距离的问题(原卷版+解析版),共42页。