|试卷下载
终身会员
搜索
    上传资料 赚现金
    最新高考数学二轮复习讲义重难点突破篇 专题30 圆锥曲线三角形面积与四边形面积题型全归类
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题30 圆锥曲线三角形面积与四边形面积题型全归类(教师版).docx
    • 学生
      专题30 圆锥曲线三角形面积与四边形面积题型全归类(学生版).docx
    最新高考数学二轮复习讲义重难点突破篇  专题30 圆锥曲线三角形面积与四边形面积题型全归类01
    最新高考数学二轮复习讲义重难点突破篇  专题30 圆锥曲线三角形面积与四边形面积题型全归类02
    最新高考数学二轮复习讲义重难点突破篇  专题30 圆锥曲线三角形面积与四边形面积题型全归类03
    最新高考数学二轮复习讲义重难点突破篇  专题30 圆锥曲线三角形面积与四边形面积题型全归类01
    最新高考数学二轮复习讲义重难点突破篇  专题30 圆锥曲线三角形面积与四边形面积题型全归类02
    最新高考数学二轮复习讲义重难点突破篇  专题30 圆锥曲线三角形面积与四边形面积题型全归类03
    还剩50页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新高考数学二轮复习讲义重难点突破篇 专题30 圆锥曲线三角形面积与四边形面积题型全归类

    展开
    这是一份最新高考数学二轮复习讲义重难点突破篇 专题30 圆锥曲线三角形面积与四边形面积题型全归类,文件包含专题30圆锥曲线三角形面积与四边形面积题型全归类教师版docx、专题30圆锥曲线三角形面积与四边形面积题型全归类学生版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。

    1、明确模拟练习的目的。不但检测知识的全面性、方法的熟练性和运算的准确性,更是训练书写规范,表述准确的过程。
    2、查漏补缺,以“错”纠错。每过一段时间,就把“错题笔记”或标记错题的试卷有侧重的看一下。查漏补缺的过程也就是反思的过程,逐渐实现保强攻弱的目标。
    3、严格有规律地进行限时训练。特别是强化对解答选择题、填空题的限时训练,将平时考试当作高考,严格按时完成,并在速度体验中提高正确率。
    4、保证常规题型的坚持训练。做到百无一失,对学有余力的学生,可适当拓展高考中难点的训练。
    5、注重题后反思总结。出现问题不可怕,可怕的是不知道问题的存在,在复习中出现的问题越多,说明你距离成功越近,及时处理问题,争取“问题不过夜”。
    6、重视每次模拟考试的临考前状态的调整及考后心理的调整。以平和的心态面对高考。
    专题30 圆锥曲线三角形面积与四边形面积题型全归类
    【考点预测】
    1、三角形的面积处理方法
    (1)底·高(通常选弦长做底,点到直线的距离为高)
    (2)水平宽·铅锤高或
    (3)在平面直角坐标系中,已知的顶点分别为,,,三角形的面积为.
    2、三角形面积比处理方法
    (1)对顶角模型
    (2)等角、共角模型
    3、四边形面积处理方法(1)对角线垂直
    (2)一般四边形
    (3)分割两个三角形
    4、面积的最值问题或者取值范围问题
    一般都是利用面积公式表示面积,然后将面积转化为某个变量的一个函数,再求解函数的最值(一般处理方法有换元,基本不等式,建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值,构造函数求导等等),在算面积的过程中,优先选择长度为定值的线段参与运算,灵活使用割补法计算面积,尽可能降低计算量.
    【题型归纳目录】
    题型一:三角形的面积问题之底·高
    题型二:三角形的面积问题之分割法
    题型三:三角形、四边形的面积问题之面积坐标化题型四:三角形的面积比问题之共角、等角模型
    题型五:三角形的面积比问题之对顶角模型
    题型六:四边形的面积问题之对角线垂直模型
    题型七:四边形的面积问题之一般四边形
    【典例例题】
    题型一:三角形的面积问题之底·高
    例1.(2022·上海市复兴高级中学高三开学考试)已知椭圆的离心率为,其左焦点到点的距离为.
    (1)求椭圆的方程;
    (2)直线与椭圆相交于两点,求的面积关于的函数关系式,并求面积最大时直线的方程.
    例2.(2022·陕西·安康市教学研究室三模(理))已知椭圆:的离心率为,且过点.
    (1)求椭圆的方程;
    (2)若直线被圆截得的弦长为,设直线与椭圆交于A,两点,为坐标原点,求面积的最大值.
    例3.(2022·江西·高三阶段练习(理))设O为坐标原点,椭圆的离心率为,且过点.
    (1)求C的方程;
    (2)若直线与C交于P,Q两点,且的面积是,求证:.
    例4.(2022·陕西·西乡县教学研究室一模(文))已知椭圆的左,右焦点分别为且经过点.
    (1)求椭圆C的标准方程;
    (2)若斜率为1的直线与椭圆C交于A,B两点,求面积的最大值(O为坐标原点)
    例5.(2022·黑龙江·鹤岗一中高三开学考试)如图,椭圆:的离心率是,短轴长为,椭圆的左、右顶点分别为、,过椭圆与抛物线的公共焦点的直线与椭圆相交于两点,与抛物线相交于两点,点为的中点.
    (1)求椭圆和抛物线的方程;
    (2)记的面积为,的面积为,若,求直线在轴上截距的范围.
    例6.(2022·湖南·新邵县教研室高三期末(文))已知圆,圆,动圆与圆内切,与圆外切.为坐标原点.
    (1)若求圆心的轨迹的方程.(2)若直线与曲线交于、两点,求面积的最大值,以及取得最大值时直线的方程.
    题型二:三角形的面积问题之分割法
    例7.(2022·河北·三河市第三中学高三阶段练习)已知椭圆的离心率为,且C的左、右焦点与短轴的两个端点构成的四边形的面积为.
    (1)求椭圆C的方程;
    (2)若直线与x轴交于点M,与椭圆C交于P,Q两点,过点P与x轴垂直的直线与椭圆C的另一个交点为N,求面积的最大值.
    例8.(2022·重庆一中高三阶段练习)已知椭圆经过点,其右焦点为.
    (1)求椭圆的离心率;
    (2)若点在椭圆上,右顶点为,且满足直线与的斜率之积为.求面积的最大值.
    例9.(2022·全国·清华附中朝阳学校模拟预测)如图所示,、分别为椭圆的左、右顶点,离心率为.
    (1)求椭圆的标准方程;
    (2)过点作两条互相垂直的直线,与椭圆交于,两点,求面积的最大值.
    例10.(2022·云南大理·模拟预测)已知为椭圆C的左、右焦点,点为其上一点,且.
    (1)求椭圆C的标准方程;
    (2)过点的直线l与椭圆C相交于P,Q两点,点P关于坐标原点O的对称点R,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
    题型三:三角形、四边形的面积问题之面积坐标化
    例11.(2022·全国·高三专题练习)如图,已知双曲线的左右焦点分别为、,若点为双曲线在第一象限上的一点,且满足,过点分别作双曲线两条渐近线的平行线、与渐近线的交点分别是和.
    (1)求四边形的面积;
    (2)若对于更一般的双曲线,点为双曲线上任意一点,过点分别作双曲线两条渐近线的平行线、与渐近线的交点分别是和.请问四边形的面积为定值吗?若是定值,求出该定值(用、表示该定值);若不是定值,请说明理由.
    例12.(2022·广西桂林·高三开学考试(理))已知P为椭圆()上一点,,分别是椭圆的左、右焦点,,且椭圆离心率为.
    (1)求椭圆的标准方程;
    (2)过的直线l交椭圆于A,B两点,点C与点B关于x轴对称,求面积的最大值
    例13.(2022·全国·高三专题练习)分别是椭圆于的左、右焦点.
    (1)若Р是该椭圆上的一个动点,求的取值范围;
    (2)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.
    例14.(2022·全国·高三专题练习)已知椭圆C:+=1,过A(2,0),B(0,1)两点.
    (1)求椭圆C的方程及离心率;
    (2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求四边形ABNM的面积.
    例15.(2022·广东·高三阶段练习)椭圆经过点且离心率为;直线与椭圆交于A,两点,且以为直径的圆过原点.
    (1)求椭圆的方程;
    (2)若过原点的直线与椭圆交于两点,且,求四边形面积的最大值.
    例16.(2022·浙江·高三竞赛)已知直线与椭圆:交于、两点,直线不经过原点.
    (1)求面积的最大值;
    (2)设为线段的中点,延长交椭圆于点,若四边形为平行四边形,求四边形的面积.
    例17.(2022·全国·高三专题练习)已知椭圆的离心率为,且经过点.
    (1)求椭圆的方程;
    (2)若过点的直线与椭圆交于两点,点关于轴的对称点为点,求面积的最大值.
    例18.(2022·河南·上蔡县衡水实验中学高三阶段练习(文))已知椭圆C:()的焦距为,且经过点.
    (1)求椭圆C的方程;
    (2)过点的直线交椭圆C于A、B两点,求(O为原点)面积的最大值.
    题型四:三角形的面积比问题之共角、等角模型
    例19.(2022·全国·高三专题练习)已知双曲线W:的左、右焦点分别为、,点,右顶点是M,且,.
    (Ⅰ)求双曲线的方程;
    (Ⅱ)过点的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.
    例20.(2022·江苏·泰州中学高三开学考试)已知椭圆的右焦点为,上顶点为H,O为坐标原点,,点在椭圆E上.
    (1)求椭圆E的方程;
    (2)设经过点且斜率不为0的直线l与椭圆E相交于A,B两点,点,.若M,N分别为直线AP,BQ与y轴的交点,记,的面积分别为,,求的值.
    例21.(2022·广东·高三阶段练习)已知椭圆过点.
    (1)求椭圆C的方程;
    (2)在椭圆C的第四象限的图象上有一个动点M,连接动点M与椭圆C的左顶点A与y的负半轴交于点E,连接动点M与椭圆的上顶点B,与x的正半轴交于点F,记四边形的面积为,的面积为,,求的取值范围.
    例22.(2022·上海金山·二模)已知椭圆的左、右焦点分别为,设是第一象限内椭圆上一点,的延长线分别交椭圆于点,直线与交于点.
    (1)求的周长;
    (2)当垂直于轴时,求直线的方程;
    (3)记与的面积分别为,求的最大值.
    例23.(2022·全国·高三专题练习)已知椭圆:的短轴长为2,离心率为.
    (1)求椭圆的标准方程;
    (2)如图,点为椭圆的上顶点,过点作互相垂直的两条直线(的斜率为正数)和,直线与以短轴为直径的圆和椭圆分别相交于点,,直线与圆和椭圆分别相交于点,,且的面积是面积的倍,求直线和的方程.
    例24.(2022·全国·高三专题练习)已知椭圆的上、下顶点分别为,抛物线在点处的切线l交椭圆于点M,N,交椭圆的短轴于点C,直线交x轴于点D.
    (1)若点C是的中点,求p的值;
    (2)设与的面积分别为,求的最大值.
    例25.(2022·河北邯郸·二模)已知点P(2,)为椭圆C:)上一点,A,B分别为C的左、右顶点,且△PAB的面积为5.
    (1)求C的标准方程;
    (2)过点Q(1,0)的直线l与C相交于点G,H(点G在x轴上方),AG,BH与y轴分别交于点M,N,记,分别为△AOM,△AON(点O为坐标原点)的面积,证明为定值.
    例26.(2022·新疆乌鲁木齐·模拟预测(理))已知椭圆,椭圆的焦点在y轴上.经过点且与椭圆有相同的离心率.
    (1)求椭圆的方程;
    (2)设A为椭圆的上顶点,点P是椭圆上在第一象限内的一点,点Q与点P关于原点对称,直线与椭圆的另一个交点分别为M,N两点,设与的面积分别为,求的取值范围.
    例27.(2022·江西鹰潭·二模(理))设O为坐标原点,动点P在圆上,过点P作轴的垂线,垂足为Q且.
    (1)求动点D的轨迹E的方程;
    (2)直线与圆相切,且直线与曲线E相交于两个不同的点A、B,点T为线段AB的中点.线段OA、OB分别与圆O交于M、N两点,记的面积分别为,求的取值范围.
    题型五:三角形的面积比问题之对顶角模型
    例28.(2022·浙江省江山中学模拟预测)已知椭圆的左、右焦点为,焦距为2,点P是椭圆C上一点满足轴,.
    (1)求椭圆C的方程;
    (2)过的直线交椭圆C于A,B(异于点P)两点,直线分别交直线于M,N,记,求的最小值.
    例29.(2022·上海·模拟预测)在平面直角坐标系中,点B与点关于原点O对称,P是动点,且直线与的斜率之积等于.
    (1)求动点P的轨迹方程C;
    (2)设直线与第(1)问的曲线C交于不同的两点E、F,以线段为直径作圆D,圆心为D,设是圆D上的动点,当t变化时,求的最大值;
    (3)设直线和分别与直线交于点M、N,问:是否存在点P使得与的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
    例30.(2022·全国·高三专题练习)已知椭圆C的左、右焦点分别为,离心率为,过点且与x轴垂直的直线与椭圆C在第一象限交于点P,且的面积为.
    (1)求椭圆的标准方程;
    (2)过点的直线与y轴正半轴交于点S,与曲线C交于点E,轴,过点S的另一直线与曲线C交于M,N两点,若,求所在的直线方程.
    例31.(2022·全国·高三专题练习)已知椭圆的右焦点为F,直线PQ过F交椭圆于P,Q两点,且.
    (1)求椭圆的长轴和短轴的比值;
    (2)如图,线段PQ的垂直平分线与PQ交于点M,与x轴,y轴分别交于D,E两点,求的取值范围.
    例32.(2022·辽宁鞍山·一模)在平面直角坐标系xOy中,点B与点关于原点对称,P是动点,且直线AP与BP的斜率之积等于.
    (1)求动点P的轨迹方程,并注明x的范围;
    (2)设直线AP与BP分别与直线交于M,N,问是否存在点P使得与面积相等?若存在,求出点P的坐标,若不存在,说明理由.
    题型六:四边形的面积问题之对角线垂直模型
    例33.(2022·全国·高三专题练习)如图,已知椭圆的左、右焦点分别为,过的直线交椭圆于两点,过的直线交椭圆于两点,且.求四边形面积的最小值.
    例34.(2022·甘肃·永昌县第一高级中学高三阶段练习(文))已知椭圆的左、右焦点分别为是上一动点,的最大面积为.
    (1)求的方程;
    (2)若直线与交于两点,为上两点,且,求四边形面积的最大值.
    例35.(2022·山东青岛·高三开学考试)在平面直角坐标系中,动圆与圆内切,且与圆外切,记动圆的圆心的轨迹为.
    (1)求轨迹的方程;
    (2)不过圆心且与轴垂直的直线交轨迹于两个不同的点,连接交轨迹于点.
    (i)若直线交轴于点,证明:为一个定点;
    (ii)若过圆心的直线交轨迹于两个不同的点,且,求四边形面积的最小值.
    题型七:四边形的面积问题之一般四边形
    例36.(2022·浙江嘉兴·高三阶段练习)已知椭圆,直线与椭圆交于,两点,且的最大值为.
    (1)求椭圆的方程;
    (2)当时,斜率为的直线交椭圆于,两点(,两点在直线的异侧),若四边形的面积为,求直线的方程.
    例37.(2022·河南·高三阶段练习(理))已知椭圆:的左焦点为,上、下顶点分别为,,.
    (1)求椭圆的方程;
    (2)若椭圆上有三点,,满足,证明:四边形的面积为定值.
    例38.(2022·全国·高三专题练习)已知椭圆的内接正方形的面积为,且长轴长为4.
    (1)求C的方程.
    (2)直线l经过点,且斜率大于零.过C的左焦点作直线l的垂线,垂足为A,过C的右焦点作直线l的垂线,垂足为B,试问在C内是否存在梯形,使得梯形的面积有最大值?若存在,求出该最大值;若不存在,请说明理由.
    例39.(2022·全国·高三专题练习)O为坐标原点椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,切.
    (1)求的方程;
    (2)过作的不垂直于y轴的弦,M为的中点,当直线与交于P,Q两点时,求四边形面积的最小值.
    例40.(2022·全国·高三专题练习)已知分别为椭圆的左、右焦点,长轴长为,分别为椭圆的上、下顶点,且四边形的面积为.
    (1)求椭圆的方程;
    (2)若椭圆的离心率为,过点的直线与曲线交于两点,设的中点为M,两点为曲线上关于原点对称的两点,且,求四边形面积的取值范围.
    例41.(2022·湖南·高考真题(理))如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
    (1)求的方程;
    (2)过点作的不垂直于轴的弦,为的中点,当直线与交于两点时,求四边形面积的最小值.
    相关试卷

    最新高考数学二轮复习讲义重难点突破篇 专题28 轻松搞定圆锥曲线离心率十九大模型: 这是一份最新高考数学二轮复习讲义重难点突破篇 专题28 轻松搞定圆锥曲线离心率十九大模型,文件包含专题28轻松搞定圆锥曲线离心率十九大模型教师版docx、专题28轻松搞定圆锥曲线离心率十九大模型学生版docx等2份试卷配套教学资源,其中试卷共120页, 欢迎下载使用。

    最新高考数学二轮复习讲义重难点突破篇 专题19 数列的综合应用: 这是一份最新高考数学二轮复习讲义重难点突破篇 专题19 数列的综合应用,文件包含专题19数列的综合应用教师版docx、专题19数列的综合应用学生版docx等2份试卷配套教学资源,其中试卷共107页, 欢迎下载使用。

    最新高考数学二轮复习讲义重难点突破篇 专题06 双变量问题: 这是一份最新高考数学二轮复习讲义重难点突破篇 专题06 双变量问题,文件包含专题06双变量问题教师版docx、专题06双变量问题学生版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        最新高考数学二轮复习讲义重难点突破篇 专题30 圆锥曲线三角形面积与四边形面积题型全归类
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map