最新中考几何专项复习专题15 几何最值之将军饮马巩固练习(基础)
展开策略一 建构高效的课堂教学模式-----先学后教,当堂训练。
高效的课堂教学模式是保证高效的复习效果的前提,学生在教师的指导和辅导下进行先自学、探究和及时训练,获得知识、发展能力的一种教学模式。
策略二 专题内容的设计应遵循教与学的认知规律和学生心理发展规律,凸显方法规律,由简单到复杂,由特殊到一般,再由一般到特殊
总结规律,推广一般。从一般到特殊:抛砖引玉,解决问题。
策略三 设计专题内容时考虑建立几何模型,体现思想方法,让学生驾轻就熟,化难为易,化繁为简。
几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。题目千变万化,但万变不离其宗。
几何最值之将军饮马巩固练习(基础)
1.如图,正方形ABEF的面积为4,△BCE是等边三角形,点C在正方形ABEF外,在对角线BF上有一点P,使PC+PE最小,则这个最小值的平方为( )
A. B. C. 12D.
2.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12,△BMC的周长是20,若点P在直线MN上,则PA-PB的最大值为( )
A. 12B. 8C. 6D. 2
3.如图,在∠MON的边OM,ON上分别有点A,D,且∠MON=30º,OA=10,OD=6,B,C两点分别是边OM,ON上的动点,则AC+BC+BD的最小值为 .
4.如图,在菱形ABCD中,AB=6,∠ABC=60º,AC与BD交于点O,点N在AC上且AN=2,点M在BC上且BM=BC,P为对角线BD上一点,则PM-PN的最大值为 .
5.如图,在菱形ABCD中,AB=,∠A=120º,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为 .
6.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?
7.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.
(1)若∠ABC=70º,则∠NMA的度数是 度;
(2)若AB=8,△MBC的周长是14.
①求BC的长度;
②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.
8.如图,在四边形ABCD中,BC∥AD,BC= AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.
(1)判断四边形ABCE的形状,并说明理由;
(2)如果AB=4,∠D=30º,点P为BE上的动点,求△PAF的周长的最小值.
9.如图,在△ABC中,AB=AC,AD是中线,且AC是DE的中垂线
(1)求证:∠BAD=∠CAD;
(2)连接CE,写出BD和CE的数量关系,并说明理由;
(3)当∠BAC=90º,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积.
10.如图,在△ABC中,∠ACB=90º,以AC为边在△ABC外作等边三角形ACD,过点D作AC的垂线,垂足为F,与AB相交于点E,连接CE
(1)说明:AE=CE=BE;
(2)若DA⊥AB,BC=6,P是直线DE上的一点,则当P在何处时,PB+PC最小,并求出此时PB+PC的值.
最新中考几何专项复习专题19 几何最值之阿氏圆巩固练习(提优): 这是一份最新中考几何专项复习专题19 几何最值之阿氏圆巩固练习(提优),文件包含中考几何专项复习专题19几何最值之阿氏圆巩固练习提优教师版含解析docx、中考几何专项复习专题19几何最值之阿氏圆巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
最新中考几何专项复习专题19 几何最值之阿氏圆巩固练习(基础): 这是一份最新中考几何专项复习专题19 几何最值之阿氏圆巩固练习(基础),文件包含中考几何专项复习专题19几何最值之阿氏圆巩固练习基础教师版含解析docx、中考几何专项复习专题19几何最值之阿氏圆巩固练习基础学生版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
最新中考几何专项复习专题18 几何最值之费马点巩固练习(提优): 这是一份最新中考几何专项复习专题18 几何最值之费马点巩固练习(提优),文件包含中考几何专项复习专题18几何最值之费马点巩固练习提优教师版含解析docx、中考几何专项复习专题18几何最值之费马点巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。