中考数学一轮考点复习精讲精练专题08 平面直角坐标系与函数概念【考点精讲】(2份打包,原卷版+解析版)
展开知识点1:直角坐标系
1.平面直角坐标系
(1)对应关系:坐标平面内的点与有序实数对是 的.
(2)坐标轴上的点:x轴,y轴上的点不属于任何象限.
2.点的坐标特征
(1)各象限内点的坐标特征:
点P(x,y)在第一象限,即x>0,y>0;点P(x,y)在第二象限,即 ;
点P(x,y)在第三象限,即x<0,y<0;点P(x,y)在第四象限,即 .
(2)坐标轴上点的特征:
x轴上点的纵坐标为0;y轴上点的横坐标为 ;原点的坐标为 .
(3)对称点的坐标特征:
点P(x,y)关于x轴的对称点为P1(x,-y);点P(x,y)关于y轴的对称点为P2 ;
点P(x,y)关于原点的对称点为P3 .
(4)点的平移特征:将点P(x,y)向右(或左)平移a个单位长度后得P'(x+a,y)(或P'(x-a,y));
将点P(x,y)向上(或下)平移b个单位长度后得P″(x,y+b)(或P″(x,y-b)).
(5)点到坐标轴的距离:
点P(x,y)到x轴的距离为|y|;到y轴的距离为|x|.
知识点2:函数的认识
1.函数的有关概念
(1)变量与常量:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.
(2)函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
(3)表示方法:解析式法、列表法、图象法.
(4)自变量的取值范围
① 解析式是整式时,自变量的取值范围是 ;
② 解析式是分式时,自变量的取值范围是 ;
③ 解析式是二次根式时,自变量的取值范围是 ;
(5)函数值:对于一个函数,如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.
2.函数的图象
(1)函数图象的概念:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
(2)函数图象的画法:列表、描点、连线.
【考点1】平面直角坐标系内点的坐标
【例1】(2022·贵州铜仁)如图,在矩形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,则D的坐标为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【例2】已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【例3】(2021·海南中考真题)如图,点 SKIPIF 1 < 0 都在方格纸的格点上,若点A的坐标为 SKIPIF 1 < 0 ,点B的坐标为 SKIPIF 1 < 0 ,则点C的坐标是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
解答本考点的有关题目,关键在于掌握平面直角坐标系内点的坐标的特征.
1.(2022·四川乐山)点 SKIPIF 1 < 0 所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为 SKIPIF 1 < 0 .若小丽的座位为 SKIPIF 1 < 0 ,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
4.(2020•滨州)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点
M的坐标为( )
A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)
5.(2022·山东泰安)如图,四边形 SKIPIF 1 < 0 为平行四边形,则点B的坐标为________.
6.(2022·湖北鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智意 攻防转换有乐趣”为主题的中国象棋文化节,如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是_____.
【考点2】点的坐标变化
【例4】(平移)已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、
D,若C(5,x),D(y,0),则x+y的值是( )
A.﹣1B.0C.1D.2
【例5】(对称)(2022·四川雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为( )
A.﹣4B.4C.12D.﹣12
1.(2022·湖南长沙)在平面直角坐标系中,点 SKIPIF 1 < 0 关于原点对称的点的坐标是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.(2022·广东)在平面直角坐标系中,将点 SKIPIF 1 < 0 向右平移2个单位后,得到的点的坐标是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.(2020广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为 ( )
A.(-3,2) B.(-2,3) C.(2,-3) D.(3,-2)
4.在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(﹣2,3),则点N的坐标为( )
A.(﹣3,2)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)
5.若点P(2a﹣1,3)关于y轴对称的点为Q(3,b),则点M(a,b)关于x轴对称的点的坐标为( )
A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)
【考点3】函数自变量的取值范围
【例6】(函数的认识)(2022·广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为 SKIPIF 1 < 0 .下列判断正确的是( )
A.2是变量B. SKIPIF 1 < 0 是变量C.r是变量D.C是常量
【例7】(函数自变量的取值范围)(2022·黑龙江大庆)在函数 SKIPIF 1 < 0 中,自变量 SKIPIF 1 < 0 的取值范围是_________.
解答本考点的有关题目,关键在于正确求解函数自变量的取值范围,即求解使函数有意义的全部值.
注意以下要点:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
1.(2021·湖北黄石市)函数 SKIPIF 1 < 0 的自变量 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 且 SKIPIF 1 < 0 D. SKIPIF 1 < 0 且 SKIPIF 1 < 0
2.(2021·四川泸州市)函数 SKIPIF 1 < 0 的自变量x的取值范围是( )
A.x<1B.x>1C.x≤1D.x≥1
3.(2021·江苏无锡市)函数y= SKIPIF 1 < 0 的自变量x的取值范围是( )
A.x≠2B.x<2C.x≥2D.x>2
4.(2020•黑龙江)在函数 SKIPIF 1 < 0 中,自变量x的取值范围是 .
【考点4】函数图象的分析与运用
【例8】(图形分析)(2022·黑龙江齐齐哈尔)如图①所示(图中各角均为直角),动点Р从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点Р运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是( )
A.AF=5B.AB=4C.DE=3D.EF=8
【例9】(函数图像运用)(2022·湖北宜昌)如图是小强散步过程中所走的路程 SKIPIF 1 < 0 (单位: SKIPIF 1 < 0 )与步行时间 SKIPIF 1 < 0 (单位: SKIPIF 1 < 0 )的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
解答本考点的有关题目,关键在于准确分析题意,把握变量之间的函数关系,从而得出正确的函数图象. 注意以下要点:
(1)函数的图象;
(2)常量与变量;
(3)函数关系式.
1.(2022·湖北武汉)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为 SKIPIF 1 < 0 ,小正方形与大正方形重叠部分的面积为 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则S随t变化的函数图象大致为( )
A.B.C. D.
2.(2022·贵州毕节)现代物流的高速发展,为乡村振兴提供了良好条件,某物流公司的汽车行驶 SKIPIF 1 < 0 后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶 SKIPIF 1 < 0 到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位: SKIPIF 1 < 0 )之间的关系如图所示,请结合图象,判断以下说法正确的是( )
A.汽车在高速路上行驶了 SKIPIF 1 < 0 B.汽车在高速路上行驶的路程是 SKIPIF 1 < 0
C.汽车在高速路上行驶的平均速度是 SKIPIF 1 < 0 D.汽车在乡村道路上行驶的平均速度是 SKIPIF 1 < 0
3.(2022·广西玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间, SKIPIF 1 < 0 分别表示兔子与乌龟所走的路程).下列说法错误的是( )
A.兔子和乌龟比赛路程是500米B.中途,兔子比乌龟多休息了35分钟
C.兔子比乌龟多走了50米D.比赛结果,兔子比乌龟早5分钟到达终点
4.(2022·山东烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图像如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为( )
A.12B.16C.20D.24
5.(2022·黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.
·
(1)甲车速度是_______km/h,乙车出发时速度是_______km/h;
(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);
(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.
中考数学一轮复习考点(精讲精练)复习专题22 函数与几何综合(2份打包,原卷版+教师版): 这是一份中考数学一轮复习考点(精讲精练)复习专题22 函数与几何综合(2份打包,原卷版+教师版),文件包含中考数学一轮复习考点精讲精练复习专题22函数与几何综合原卷版doc、中考数学一轮复习考点精讲精练复习专题22函数与几何综合原卷版pdf、中考数学一轮复习考点精讲精练复习专题22函数与几何综合教师版doc、中考数学一轮复习考点精讲精练复习专题22函数与几何综合教师版pdf等4份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
中考数学一轮复习核心考点精讲精练专题21 圆(2份打包,原卷版+解析版): 这是一份中考数学一轮复习核心考点精讲精练专题21 圆(2份打包,原卷版+解析版),文件包含中考数学一轮复习核心考点精讲精练专题21圆原卷版doc、中考数学一轮复习核心考点精讲精练专题21圆解析版doc等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
中考数学一轮复习核心考点精讲精练专题15 反比例函数(2份打包,原卷版+解析版): 这是一份中考数学一轮复习核心考点精讲精练专题15 反比例函数(2份打包,原卷版+解析版),文件包含中考数学一轮复习核心考点精讲精练专题15反比例函数原卷版doc、中考数学一轮复习核心考点精讲精练专题15反比例函数解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。