终身会员
搜索
    上传资料 赚现金

    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)

    立即下载
    加入资料篮
    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)第1页
    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)第2页
    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)第3页
    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)第4页
    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)第5页
    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)第6页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习课件 第5章 四边形第26课正方形(含答案)

    展开

    这是一份中考数学一轮复习课件 第5章 四边形第26课正方形(含答案),共13页。PPT课件主要包含了考点知识,是直角,有一组邻边相等,有一个角是直角,一组邻边相等,一个角是直角,互相垂直平分且相等,互相垂直,例题与变式,过关训练等内容,欢迎下载使用。
    1.正方形的定义:有一组邻边__________且有一个角__________的平行四边形是正方形.
    2.正方形的性质:正方形既是__________________的矩形,又是__________________的菱形,因此,它既有__________的性质,又有________的性质.
    3.正方形的判定:(1)有__________________的矩形是正方形.(2)有________________的菱形是正方形.(3)对角线______________________的四边形是正方形. (4)对角线________________的矩形是正方形. (5)对角线__________________的菱形是正方形.
    【例1】如图,在正方形ABCD中,E为BC上一点, AF平分∠DAE,求证:BE+DF=AE.
    【考点1】正方形的性质
    证明:延长CB到G,使GB=DF,连接AG, ∵四边形ABCD为正方形,∴AD=AB. ∴△ADF≌△ABG. ∴∠AFD=∠G,∠GAB=∠DAF=∠EAF. 又∵AB∥CD, ∴∠AFD =∠EAF +∠BAE=∠GAB +∠BAE =∠GAE. ∴∠G=∠GAE. ∴AE=GE=GB+BE=DF+BE.
    【变式1】如图,已知点E为正方形ABCD的边BC 上一点,连接AE,过点D作DG⊥AE,垂足为G, 延长DG交AB于点F,求证:BF=CE.
    证明:在正方形ABCD中, ∠DAF=∠ABE=90°,DA=AB=BC, ∵DG⊥AE,∴∠FDA+∠DAG=90°. 又∵∠EAB+∠DAG=90°,∴∠FDA=∠EAB. 在Rt△DAF与Rt△ABE中,DA=AB,∠FDA=∠EAB, ∴Rt△DAF≌Rt△ABE. ∴AF=BE. 又AB=BC,∴BF=CE.
    【考点2】正方形的判定
    【例2】如图,四边形ABCD是正方形,分别过点A,C两点 作l1∥l2,作BM⊥l2于点M,DN⊥l2于点N,直线MB,DN分别交l1于G,P点,求证:四边形PGMN是正方形.
    证明:l1∥l2,BM⊥l1,DN⊥l2, ∴∠GMN=∠P=∠N=90°, ∴四边形PGMN为矩形. ∵AB=AD,∠M=∠N=90°, ∠ADN+∠NAD=90°,∠NAD+∠BAM=90°, ∴∠ADN=∠BAM. 又∵AD=BA,∴Rt△ABM≌Rt△DAN(HL),∴AM=DN. 同理AN=DP. ∴AM+AN=DN+DP,即MN=PN. ∴四边形PGMN是正方形.
    【变式2】已知:如图,在△ABC中,∠C=90°, CD平分∠ACB,DE⊥BC于点E,DF⊥AC于点F, 求证:四边形CFDE是正方形.
    证明:∵CD平分∠ACB,DE⊥BC,DF⊥AC, ∴DE=DF,∠DFC=90°,∠DEC=90°. 又∵∠ACB=90°, ∴四边形DECF是矩形. ∵DE=DF, ∴矩形DECF是正方形.
    【考点3】正方形的综合应用
    【例3】如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,求∠BCF的度数.
    解:过点A作AO⊥FB的延长线于点O, 连接BD,交AC于点Q, ∵四边形ABCD是正方形,∴BQ⊥AC. ∵BF∥AC,∴AO∥BQ, 且∠QAB=∠QBA=45°. ∴AO=BQ=AQ= AC, ∵AE=AC,∴AO= AE. ∴∠AEO=30°. ∵BF∥AC,∴∠CAE=∠AEO=30°. ∵BF∥AC,CF∥AE,∴∠CFE=∠CAE=30°. ∵BF∥AC,∴∠CBF=∠BCA=45°. ∴∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°.
    【变式3】已知:如图,在正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于点G,DG交OA于点F,求证:OE=OF.
    证明:在正方形ABCD中,对角线是垂直平分的,所以AO=OD, AC垂直BD,∠AFG=∠OFD(对顶角),DG垂直AE,所以∠AFG+∠GAF=∠AEO+∠GAF,得∠OFD=∠AEO,△DOF≌△AOE.所以OE=OF.
    1.顺次连接正方形四边中点所得的四边形一定是(  )A.正方形     B.矩形C.菱形 D.等腰梯形
    3.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为(  )
    2.已知四边形ABCD是平行四边形,下列结论中不正确的是(  )A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形
    4.如图,正方形OABC的两边OA,OC分别在x轴、 y轴上,点D(5,3)在边AB上,以C为中心,把 △CDB旋转90°,求旋转后点D的对应点D′的坐标.
    解:∵点D(5,3)在边AB上, ∴BC=5,BD=5-3=2,①若顺时针旋转,则点D′在x轴上,OD′=2, 所以,D′(-2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2, 所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(-2,0).
    5.如图,正方形ABCD和正方形CEFG中,点D在 CG上,BC=1,CE=3,H是AF的中点,求 CH 的长.
    解:连接AC,CF, ∵正方形ABCD和正方形CEFG中, BC=1,CE=3, ∴AC= ,CF= ,∠ACD=∠GCF=45°. ∴∠ACF=90°. 由勾股定理,得AF= . ∵H是AF的中点, ∴CH= AF=12× = .
    6.如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.
    解:(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C, 在△ABM和△BCP中, ∴△ABM≌△BCP(SAS). ∴AM=BP,∠BAM=∠CBP.∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°.∴AM⊥BP. ∵将线段AM绕M顺时针旋转90°得到线段MN, ∴AM⊥MN,且AM=MN. ∴MN∥BP. ∴四边形BMNP是平行四边形.

    相关课件

    第25讲 特殊四边形-正方形与梯形(课件)-2024年中考数学一轮复习课件(全国通用):

    这是一份第25讲 特殊四边形-正方形与梯形(课件)-2024年中考数学一轮复习课件(全国通用),共47页。PPT课件主要包含了中考数学一轮复习策略,知识建构,考点精讲,考情分析等内容,欢迎下载使用。

    中考数学一轮复习课件第5章四边形第26课《正方形》(含答案):

    这是一份中考数学一轮复习课件第5章四边形第26课《正方形》(含答案),共13页。PPT课件主要包含了考点知识,是直角,有一组邻边相等,有一个角是直角,一组邻边相等,一个角是直角,互相垂直平分且相等,互相垂直,例题与变式,过关训练等内容,欢迎下载使用。

    中考数学一轮复习课时练习课件第7单元 第24课时 矩形、菱形、正方形 (含答案):

    这是一份中考数学一轮复习课时练习课件第7单元 第24课时 矩形、菱形、正方形 (含答案),共60页。PPT课件主要包含了垂直平分,一组对角,-54等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map