2024年中考第一次模拟考试题:数学(福建卷)(教师用)
展开
这是一份2024年中考第一次模拟考试题:数学(福建卷)(教师用),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第Ⅰ卷
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1. 下列各数中,最小的是( )
A. B. 0C. D. 2
【答案】A
【解析】
【分析】根据正数大于零,零大于负数,可得答案.
【详解】解:正数大于零,零大于负数,得
故选:A.
【点睛】本题考查了有理数比较大小,正数大于零,零大于负数,熟练掌握有理数的大小比较的方法是解题的关键.
2.如图是国家级非物质文化遗产衢州莹白瓷的直口杯,它的主视图是( )
A. B. C. D.
【答案】D
【解析】
【分析】根据视图的意义,从正面看所得到的图形即可.
【详解】解:该直口杯的主视图为
故选:D.
【点睛】本题考查简单几何体的三视图,理解视图的意义是正确判断的前提.
3. “绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿万亩,使得湿地生态环境状况持续向好.其中数据万用科学记数法表示为( )
A. B. C. D.
【答案】C
【解析】
【分析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】解:万,
故选:C.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
4. 在平面直角坐标系中,点在( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
【答案】A
【解析】
【分析】根据各象限内点的坐标特征解答.
【详解】点(1,2)所在的象限是第一象限.
故选:A.
【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
5. 下列运算正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】直接利用积的乘方运算法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别化简,进而得出答案.
【详解】解:A.,故此选项符合题意;
B.,故此选项不合题意;
C.,故此选项不合题意;
D.,故此选项不合题意.
故选:A.
【点睛】此题主要考查了积的乘方运算以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
6. 某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了人,则可得到方程( )
A. B. C. D.
【答案】C
【解析】
【分析】患流感的人把病毒传染给别人,自己仍然患病,包括在总数中.设每一轮传染中平均每人传染了人,则第一轮传染了个人,第二轮作为传染源的是人,则传染人,依题意列方程:.
【详解】由题意得:,
故选:C.
【点睛】本题考查的是根据实际问题列一元二次方程.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.
7. 如图,在中,,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于P,Q两点,作直线交,于点D,E,连接.下列说法错误的是( )
A. 直线是的垂直平分线B.
C. D.
【答案】D
【解析】
【分析】根据直线是的垂直平分线、平行线分线段成比例、三角形中位线定理、相似三角形的判定和性质等知识,分别进行判断即可.
【详解】解:A.由作图过程可知,直线是的垂直平分线,故选项正确,不符合题意;
B.由作图过程可知,直线是的垂直平分线,
∴点E是的中点,,
在中,,
∴,
∴,
即点D是中点,
∴,
故选项正确,不符合题意;
C.∵点D是的中点,点E是的中点,
∴是的中位线,
∴,
故选项正确,不符合题意;
D.∵,
∴,
∴,
∴,
故选项错误,符合题意.
故选:D.
【点睛】此题考查了相似三角形的判定和性质、平行线分线段成比例定理、垂直平分线的性质、三角形中位线定理等知识,熟练掌握相似三角形的判定和性质、平行线分线段成比例定理是解题的关键.
8. 下列说法正确的是( )
A. 检测“神州十六号”载人飞船零件的质量,应采用抽样调查
B. 任意画一个三角形,其外角和是是必然事件
C. 数据4,9,5,7的中位数是6
D. 甲、乙两组数据的方差分别是,,则乙组数据比甲组数据稳定
【答案】C
【解析】
【分析】根据普查和抽样调查、事件的分类、中位数、方差的意义分别进行判断即可
【详解】解:A.检测“神州十六号”载人飞船零件的质量,应采用普查,故选项错误,不符合题意;
B.任意画一个三角形,其外角和是是不可能事件,故选项错误,不符合题意;
C.数据4,9,5,7的中位数是,故选项准确,符合题意;
D.甲、乙两组数据的方差分别是,,则乙组数据比甲组数据更不稳定,故选项错误,不符合题意.
故选:C.
【点睛】此题考查了普查和抽样调查、事件的分类、中位数、方差的意义,熟练掌握相关知识是解题的关键.
9. 如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆,,的最大仰角为.当时,则点到桌面的最大高度是( )
A. B. C. D.
【答案】D
【解析】
【分析】过点作于,过点作于,利用解直角三角形可得,,根据点到桌面的最大高度,即可求得答案.
【详解】如图,过点作于,过点作于,
在中,,
在中,,
点到桌面的最大高度,
故选:D.
【点睛】本题考查了解直角三角形的应用,解题关键是添加辅助线,构造直角三角形,利用解直角三角形解决问题.
10. 已知二次函数(a是常数,)的图象上有和两点.若点,都在直线的上方,且,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】根据已知条件列出不等式,利用二次函数与轴的交点和二次函数的性质,即可解答.
【详解】解:,
,
点,都在直线的上方,且,
可列不等式:,
,
可得,
设抛物线,直线,
可看作抛物线在直线下方的取值范围,
当时,可得,
解得,
,
开口向上,
的解为,
根据题意还可列不等式:,
,
可得,
整理得,
设抛物线,直线,
可看作抛物线在直线下方的取值范围,
当时,可得,
解得,
,
抛物线开口向下,
的解为或,
综上所述,可得,
故选:C.
【点睛】本题考查了二次函数图象上的点的坐标特征,一次函数图象上点的坐标特征,正确列出不等式是解题的关键.
第Ⅱ卷
二、填空题(本大题共6个小题,每小题4分,共24分)
11.如果温度上升,记作,那么温度下降记作___________ .
【答案】
【解析】
【分析】根据正负数的意义即可求解.
【详解】解:如果温度上升,记作,那么温度下降记作
故答案为:.
【点睛】本题考查了正负数意义,理解题意是解题的关键.
12. 在中,,分别为边,的中点,,则的长为__________cm.
【答案】
【解析】
【分析】由于、分别为、边上的中点,那么是的中位线,根据三角形中位线定理可求.
【详解】如图所示,
、分别为、边上的中点,
是的中位线,
;
又∵,
∴;
故答案为:.
【点睛】本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.
13.如图,在平行四边形中,按如下步骤作图:①以点为圆心,以适当长为半径画弧,分别交,于点,;②分别以点,为圆心,以大于的长为半径画弧,两弧在内交于点;③作射线交于点.若,则为_________.
【答案】
【解析】
【分析】先利用基本作图得,再根据平行四边形的性质和平行线的性质得到,从而得到.
【详解】解:由作法得平分,
,
四边形为平行四边形,
,
,
,
.
故答案为:.
【点睛】本题考查了尺规作角平分线,平行四边形的性质,熟练掌握基本作图是解题的关键.
14. 某青年排球队有12名队员,年龄的情况如下表:
则这12名队员年龄的中位数是______岁.
【答案】19
【解析】
【分析】根据中位数的定义,求出第6名队员和第7名队员年龄的平均数即可.
【详解】解:∵,
∴第6名队员和第7名队员年龄均为19岁,
∴这12名队员年龄的中位数是19岁,
故答案为:19.
【点睛】本题主要考查了求中位数,解题的关键是掌握中位数的定义,奇数个数据的中位数是最中间的一个数据,偶数个数据的中位数是最中间两个数据的平均数.
15. 如图,在中,,,,将绕点逆时针旋转到的位置,点的对应点首次落在斜边上,则点的运动路径的长为_________.
【答案】
【解析】
【分析】首先证明是等边三角形,再根据弧长公式计算即可.
【详解】解:在中,∵,,,
∴,
由旋转的性质得,,
,
∴是等边三角形,
∴,
∴点的运动路径的长为.
故答案为:.
【点睛】本题考查了旋转变换,含直角三角形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是证明是等边三角形.
16. 下面是勾股定理的一种证明方法:图1所示纸片中,,四边形,是正方形.过点,将纸片分别沿与平行、垂直两个方向剪裁成四部分,并与正方形,拼成图2.
(1)若,的面积为16,则纸片Ⅲ的面积为________.
(2)若,则________.
【答案】 ①. 9 ②. ##
【解析】
【分析】(1)在图1中,过作于,由,可得,,故,而的面积为16,即可得纸片Ⅲ的面积为;
(2)标识字母如图,设,证明,可得,由,有,即,可得或,而,,即可得到答案.
【详解】(1)在图1中,过作于,如图:
,
,
,
,即,
,
,
,即,
,
,
的面积为16,
,
,
,
纸片Ⅲ的面积为;
故答案为:9;
(2)如图:
,
,
设,则,,
,,,
,
,
,,
,
,
,
,
解得或,
当时,,这情况不符合题意,舍去;
当时,,
而,,
.
故答案为:.
【点睛】本题考查相似三角形的性质与判定,涉及正方形性质及应用,全等三角形性质与判定,锐角三角函数等知识,解题的关键是掌握三角形相似的判定定理.
三、解答题(本大题共9个小题,共86分.解答应写出文字说明,证明过程或演算步骤)
17.(8分) 计算:.
【答案】
【解析】
【分析】计算乘方、化简绝对值、计算零指数幂,再进行加减运算即可得到答案.
【详解】解:原式
.
【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解题的关键.
18.(8分)解不等式组:
【答案】
【解析】
【分析】先分别解两个不等式得到 和,然后根据大小小大中间找确定不等式组的解集.
【详解】解:解不等式①,得;
解不等式②,得.
∴原不等式组的解集为.
【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.
19.(8分)如图,已知,,.求证:.
【答案】见解析
【解析】
【分析】先由题意可证,可得,再根据等式的性质即可得出结论.
【详解】证明:在和中,
,
,
,
,
.
【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.
20. (8分)先化简,再求值:,其中.
【答案】,1
【解析】
【分析】先将分子分母因式分解,除法改写为乘法,括号里面通分计算,再根据分式混合运算的运算法则和运算顺序进行化简,根据负整数幂和0次幂的运算法则,求出x的值,最后将x的值代入计算即可.
【详解】解:
,
∵,
∴原式.
【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则,以及负整数幂和0次幂的运算法则是解题的关键.
21. (8分)如图,在中,,以为直径的交边于点D,过点C作的切线,交的延长线于点E.
(1)求证:;
(2)若,,求的半径.
【答案】(1)见解析 (2)
【解析】
【分析】(1)先根据圆周角定理得到.再根据切线的性质得到.然后利用等角的余角相等得到;
(2)先证明得到,则可证明,利用正切的定义,在中有,在中有,所以,然后求出的长,从而得到的半径.
【小问1详解】
证明:∵为的直径,
∴.
∵为的切线,
∴,
∴.
∵,
∴;
【小问2详解】
解:∵,
∴,
∴,
∵,
∴,
在中,,
在中,,
即,
∴,
∴,
∴的半径为.
【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和解直角三角形.
22. (10分)首届楚文化节在荆州举办前,主办方为使参与服务的志愿者队伍整齐,随机抽取了部分志愿者,对其身高进行调查,将身高(单位:)数据分A,B,C,D,E五组制成了如下的统计图表(不完整).
根据以上信息回答:
(1)这次被调查身高的志愿者有___________人,表中的___________,扇形统计图中的度数是___________;
(2)若组的4人中,男女各有2人,以抽签方式从中随机抽取两人担任组长.请列表或画树状图,求刚好抽中两名女志愿者的概率.
【答案】(1)20,6,
(2)
【解析】
【分析】(1)用C组所占的比列出方程,即可求得m的值,再求出总数;用周角乘以D组所占的比,即可求出的度数;
(2)列出树状图或表格,求出所有可能的情况总数,再找出刚好抽中两名女志愿者的数量,带入公式即可.
【小问1详解】
∵
∴
∴
故填:20, 6,;
【小问2详解】
画树状图为:
或者列表为:
共有12种等可能结果,其中抽中两名女志愿者的结果有2种
(抽中两名女志愿者).
【点睛】本题考查统计与概率综合,求出总数和列出树状图,或表格是解题的关键.
23. (10分)视力表中蕴含着很多数学知识,如:每个“E”形图都是正方形结构,同一行的“E”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.
素材1 国际通用的视力表以5米为检测距离,任选视力表中7个视力值n,测得对应行的“E”形图边长b(mm),在平面直角坐标系中描点如图1.
探究1 检测距离为5米时,归纳n与b的关系式,并求视力值1.2所对应行的“E”形图边长.
素材2 图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“E”形图所成角叫做分辨视角,视力值与分辨视角(分)的对应关系近似满足.
探究2 当时,属于正常视力,根据函数增减性写出对应的分辨视角的范围.
素材3 如图3,当确定时,在A处用边长为的I号“E”测得的视力与在B处用边长为的Ⅱ号“E”测得的视力相同.
探究3 若检测距离为3米,求视力值1.2所对应行的“E”形图边长.
【答案】探究检测距离为5米时,视力值12所对应行的“”形图边长为,视力值1.2所对应行的“”形图边长为;
探究;
探究3:检测距离为时,视力值1.2所对应行的“”形图边长为.
【解析】
【分析】探究1:由图象中的点的坐标规律得到与成反比例关系,由待定系数法可得,将 代入得:;
探究2:由,知在自变量的取值范围内,随着的增大而减小,故当时,,即可得;
探究3:由素材可知,当某人的视力确定时,其分辨视角也是确定的,可得,即可解得答案.
【详解】探究
由图象中的点的坐标规律得到与成反比例关系,
设,将其中一点代入得:,
解得:,
,将其余各点一一代入验证,都符合关系式;
将 代入得:;
答:检测距离为5米时,视力值1.2所对应行的“”形图边长为,视力值1.2所对应行的“”形图边长为;
探究
,
在自变量的取值范围内,随着的增大而减小,
当时,,
,
;
探究3:由素材可知,当某人的视力确定时,其分辨视角也是确定的,由相似三角形性质可得,
由探究1知,
,
解得,
答:检测距离为时,视力值1.2所对应行的“”形图边长为.
【点睛】本题考查反比例函数的综合应用,涉及待定系数法,函数图象上点坐标的特征,相似三角形的性质等知识,解题的关键是读懂题意,能将生活中的问题转化为数学问题加以解决.
24. (13分)已知:关于的函数.
(1)若函数的图象与坐标轴有两个公共点,且,则的值是___________;
(2)如图,若函数的图象为抛物线,与轴有两个公共点,,并与动直线交于点,连接,,,,其中交轴于点,交于点.设的面积为,的面积为.
①当点为抛物线顶点时,求的面积;
②探究直线在运动过程中,是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
【答案】(1)0或2或
(2)①6,②存在,
【解析】
【分析】(1)根据函数与坐标轴交点情况,分情况讨论函数为一次函数和二次函数的时候,按照图像的性质以及与坐标轴交点的情况即可求出值.
(2)①根据和的坐标点即可求出抛物线的解析式,即可求出顶点坐标,从而求出长度,再利用和的坐标点即可求出的直线解析式,结合即可求出点坐标,从而求出长度,最后利用面积法即可求出的面积.
②观察图形,用值表示出点坐标,再根据平行线分线段成比例求出长度,利用割补法表示出和,将二者相减转化成关于的二次函数的顶点式,利用取值范围即可求出的最小值.
【小问1详解】
解:函数的图象与坐标轴有两个公共点,
,
,
,
当函数为一次函数时,,
.
当函数为二次函数时,
,
若函数的图象与坐标轴有两个公共点,即与轴,轴分别只有一个交点时,
,
.
当函数为二次函数时,函数的图象与坐标轴有两个公共点, 即其中一点经过原点,
,
,
.
综上所述,或0.
故答案为:0或2或.
【小问2详解】
解:①如图所示,设直线与交于点,直线与交于点.
依题意得:,解得:
抛物线的解析式为:.
点为抛物线顶点时,,,
,,
由,得直线的解析式为,
在直线上,且在直线上,则的横坐标等于的横坐标,
,
,,
,
.
故答案为:6.
②存在最大值,理由如下:
如图,设直线交轴于.
由①得:,,,,,
,
,,
,
,
即,
,,
,
,
,,
当时,有最大值,最大值为.
故答案为:.
【点睛】本题考查了二次函数的综合应用,涉及到函数与坐标轴交点问题,二次函数与面积问题,平行线分线段成比例,解题的关键在于分情况讨论函数与坐标轴交点问题,以及二次函数最值问题.
25. (13分)如图1,点为矩形的对称中心,,,点为边上一点,连接并延长,交于点,四边形与关于所在直线成轴对称,线段交边于点.
(1)求证:;
(2)当时,求的长;
(3)令,.
①求证:;
②如图2,连接,,分别交,于点,.记四边形的面积为,的面积为.当时,求的值.
【答案】(1)见解析 (2)
(3)①见解析;②
【解析】
【分析】(1)根据轴对称和矩形的性质,证明,即可解答;
(2)过点作于,设,则,求得,再利用勾股定理,列方程即可解答;
(3)①过点作于,连接,证明,可得,得到,即可解答;
②连接,证明,进而证明,进而证明,可得,再证明,得到,再得到,最后根据①中结论,即可解答.
【小问1详解】
证明:四边形为矩形,
,
,
四边形与关于所在直线成轴对称,
,
,
;
【小问2详解】
解:如图,过点作于,
设设,则,
,
,
四边形为矩形,
,
点为矩形的对称中心,
,
,
在中,,
可得方程,
解得(此时,故舍去0),
;
【小问3详解】
解:①证明:过点作于,连接,
点为矩形的对称中心,
,,
,
,
,
,
,
,即,
,,
;
②如图,连接,
由题意可得,
点为矩形的对称中心,
,
同理可得,
由(1)知,
,
即,
,
,
,
,
,
,
,
即,
,
,
,
,
,
,
,
,
,
,
,
,
当时,由①可得,
解得,
,
,
.
【点睛】本题考查了四边形综合应用,涉及轴对称变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解题的关键是正确作出辅助线,构造全等三角形和相似三角形是解题的关键.
年龄/岁
18
19
20
21
22
人数
3
5
2
1
1
组别
身高分组
人数
A
3
B
2
C
D
5
E
4
男1
男2
女1
女2
男1
(男1男2)
(男1女1)
(男1女2)
男2
(男2男1)
(男2女1)
(男2女2)
女1
(女1男1)
(女1男2)
(女1女2)
女2
(女2男1)
(女2男2)
(女2女1)
相关试卷
这是一份2024年中考第一次模拟考试题:数学(北京卷)(学生用),共10页。试卷主要包含了已知,化简求值等内容,欢迎下载使用。
这是一份2024年中考第一次模拟考试题:数学(北京卷)(教师用),共27页。试卷主要包含了填空题,解答题解答应写出文字说明等内容,欢迎下载使用。
这是一份2024年中考第一次模拟考试题:数学(安徽卷)(教师用),共21页。试卷主要包含了已知点,在直线等内容,欢迎下载使用。