|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版)01
    2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版)02
    2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版)

    展开
    这是一份2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版),共10页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    【考纲要求】
    1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.
    2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.
    【考点预测】
    1.直线与平面平行
    (1)直线与平面平行的定义
    直线l与平面α没有公共点,则称直线l与平面α平行.
    (2)判定定理与性质定理
    2.平面与平面平行
    (1)平面与平面平行的定义
    没有公共点的两个平面叫做平行平面.
    (2)判定定理与性质定理
    【常用结论】
    (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
    (2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
    (3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.
    (4)若α∥β,a⊂α,则a∥β.
    【方法技巧】
    1.判断或证明线面平行的常用方法
    ①利用线面平行的定义(无公共点).
    ②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).
    ③利用面面平行的性质(α∥β,a⊂α⇒a∥β).
    ④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
    2.应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.
    3.证明面面平行的方法
    (1)面面平行的定义.
    (2)面面平行的判定定理.
    (3)垂直于同一条直线的两个平面平行.
    (4)两个平面同时平行于第三个平面,那么这两个平面平行.
    (5)利用“线线平行”“线面平行”“面面平行”的相互转化.
    4.解决这种数值或存在性问题的题目时,注意先给出具体的值或先假设存在,然后再证明.
    二、【题型归类】
    【题型一】直线与平面平行的判定与性质
    【典例1】如图所示,正方形ABCD与正方形ABEF所在的平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.
    【典例2】如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.
    【典例3】如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.
    (1)求证:AM∥平面BDE;
    (2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.
    【题型二】平面与平面平行的判定与性质
    【典例1】如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).
    (1)求证:BC∥GH;
    (2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.
    【典例2】如图,在三棱柱ABC-A1B1C1中,E,F,G分别为B1C1,A1B1,AB的中点.
    (1)求证:平面A1C1G∥平面BEF;
    (2)若平面A1C1G∩BC=H,求证:H为BC的中点.
    【典例3】如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.
    (1)证明:平面A1BD∥平面CD1B1;
    (2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.
    【题型三】平行关系的综合应用
    【典例1】如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=eq \f(1,2)AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
    (1)求证:AP∥平面BEF;
    (2)求证:GH∥平面PAD.
    【典例2】如图,四边形ABCD与四边形ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:
    (1)BE∥平面DMF;
    (2)平面BDE∥平面MNG.
    【典例3】如图,在正方体ABCD-A1B1C1D1中,P,Q分别为对角线BD,CD1上的点,且eq \f(CQ,QD1)=eq \f(BP,PD)=eq \f(2,3).
    (1)求证:PQ∥平面A1D1DA;
    (2)若R是AB上的点,eq \f(AR,AB)的值为多少时,能使平面PQR∥平面A1D1DA?请给出证明.
    三、【培优训练】
    【训练一】(多选)在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,P是线段BC1上的一动点,则下列说法中正确的是( )
    A.A1P∥平面AD1C
    B.A1P与平面BCC1B1所成角的正切值的最大值是eq \f(2\r(5),5)
    C.A1P+PC的最小值为eq \f(\r(170),5)
    D.以A为球心,eq \r(2)为半径的球面与侧面DCC1D1的交线长是eq \f(π,2)
    【训练二】在正四棱柱ABCD­A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
    【训练三】如图,在正方体ABCD-A1B1C1D1中,P,Q分别为对角线BD,CD1上的点,且eq \f(CQ,QD1)=eq \f(BP,PD)=eq \f(2,3).
    (1)求证:PQ∥平面A1D1DA;
    (2)若R是AB上的点,eq \f(AR,AB)的值为多少时,能使平面PQR∥平面A1D1DA?请给出证明.
    【训练四】如图,正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为AB1,A1C1上的点,A1N=AM.
    (1)求证:MN∥平面BB1C1C;
    (2)求MN的最小值.
    【训练五】如图,在四棱锥P-ABCD中,侧棱PA⊥平面ABCD,四边形ABCD是直角梯形,BC∥AD,AB⊥AD,PA=AB=2,AD=3BC=3,E在棱AD上,且AE=1,若平面CEF与棱PD相交于点F,且平面CEF∥平面PAB.
    (1)求eq \f(PF,FD)的值;
    (2)求点F到平面PBC的距离.
    【训练六】如图,四棱锥P­ABCD中,底面ABCD是直角梯形,AB∥CD,AB⊥AD,AB=2CD=2AD=4,侧面PAB是等腰直角三角形,PA=PB,平面PAB⊥平面ABCD,点E,F分别是棱AB,PB上的点,平面CEF∥平面PAD.
    (1)确定点E,F的位置,并说明理由;
    (2)求三棱锥F­DCE的体积.
    四、【强化测试】
    【单选题】
    1. 下列命题中正确的是( )
    A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面
    B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行
    C.平行于同一条直线的两个平面平行
    D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α
    2. 如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )
    A.BD∥平面EFGH,且四边形EFGH是矩形
    B.EF∥平面BCD,且四边形EFGH是梯形
    C.HG∥平面ABD,且四边形EFGH是菱形
    D.EH∥平面ADC,且四边形EFGH是平行四边形
    3. 在四棱锥P­ABCD中,底面ABCD是平行四边形,E∈PC,F∈PB,eq \(PE,\s\up6(→))=3eq \(EC,\s\up6(→)),eq \(PF,\s\up6(→))=λeq \(FB,\s\up6(→)),如图.若AF∥平面BDE,则λ的值为( )
    A.1 B.3
    C.2 D.4
    4. 设a,b,c表示不同直线,α,β表示不同平面,下列命题:
    ①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若a⊂α,b⊂β,α∥β,则a∥b.
    真命题的个数是( )
    A.1 B.2
    C.3 D.4
    5. 如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )
    A.BD∥平面EFGH,且四边形EFGH 是矩形
    B.EF∥平面BCD,且四边形EFGH是梯形
    C.HG∥平面ABD,且四边形EFGH是菱形
    D.EH∥平面ADC,且四边形EFGH是平行四边形
    6. 已知在三棱柱ABC-A1B1C1中,M,N分别为AC,B1C1的中点,E,F分别为BC,B1B的中点,则直线MN与直线EF、平面ABB1A1的位置关系分别为( )
    A.平行、平行 B.异面、平行 C.平行、相交 D.异面、相交
    7. 如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点,则下列叙述中正确的是( )
    A.直线BQ∥平面EFG
    B.直线A1B∥平面EFG
    C.平面APC∥平面EFG
    D.平面A1BQ∥平面EFG
    8. 正方体ABCD-A1B1C1D1的棱长为1,点M,N分别是棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且PA1∥平面AMN,则PA1的长度范围为( )
    A.eq \b\lc\[\rc\](\a\vs4\al\c1(1,\f(\r(5),2))) B.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3\r(2),4),\f(\r(5),2)))
    C.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3\r(2),4),\f(3,2))) D.eq \b\lc\[\rc\](\a\vs4\al\c1(1,\f(3,2)))
    【多选题】
    9. 已知m,n为两条不同的直线,α,β为两个不同的平面,则下列说法错误的是( )
    A.若m⊥α,m⊥n,则n∥α
    B.若m⊥α,n∥β且α∥β,则m⊥n
    C.若m⊂α,n⊂α且m∥β,n∥β,则α∥β
    D.若直线m,n与平面α所成的角相等,则m∥n
    10. 在正方体ABCD­A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,下列四个推断中正确的是( )
    A.FG∥平面AA1D1D
    B.EF∥平面BC1D1
    C.FG∥平面BC1D1
    D.平面EFG∥平面BC1D1
    11. 如图,正三棱柱ABC­A1B1C1各条棱的长度均相等,D为AA1的中点,M,N分别是线段BB1和线段CC1上的动点(含端点),且满足BM=C1N,当M,N运动时,下列结论中正确的是( )
    A.在△DMN内总存在与平面ABC平行的线段
    B.平面DMN⊥平面BCC1B1
    C.三棱锥A1­DMN的体积为定值
    D.△DMN可能为直角三角形
    12. 已知正四棱柱ABCD­A1B1C1D1的底面边长为2,侧棱AA1=1,P为上底面A1B1C1D1上的动点,下列四个结论中正确的为( )
    A.若PD=3,则满足条件的P点有且只有一个
    B.若PD=eq \r(3),则点P的轨迹是一段圆弧
    C.若PD∥平面ACB1,则DP长的最小值为2
    D.若PD∥平面ACB1,且PD=eq \r(3),则平面BDP截正四棱柱ABCD­A1B1C1D1的外接球所得平面图形的面积为eq \f(9π,4)
    【填空题】
    13. 如图,正方体ABCD­A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长等于________.
    14. 在下面给出的条件中,若条件足够推出a∥α,则在横线上填“OK”;若条件不能保证推出a∥α,则请在横线上补足条件:
    (1)条件:a∥b,b∥c,c⊂α,______,结论:a∥α;
    (2)条件:α∩β=b,a∥b,a⊂β,______,结论:a∥α.
    15. 在四面体A­BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.
    16. 如图,在正方体ABCD­A1B1C1D1中判断下列位置关系:
    (1)AD1所在的直线与平面BCC1的位置关系是______;
    (2)平面A1BC1与平面ABCD的位置关系是______.
    【解答题】
    17. 已知在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥DC,AB∥DC,DC=2AB,Q为PC的中点.
    (1)求证:BQ∥平面PAD;
    (2)若PD=3,BC=eq \r(2),BC⊥BD,试在线段PC上确定一点S,使得三棱锥S-BCD的体积为eq \f(2,3).
    18. 如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
    (1)证明:MN∥平面C1DE;
    (2)求点C到平面C1DE的距离.
    19. 如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,AA1的中点,求证:
    (1)BF∥HD1;
    (2)EG∥平面BB1D1D;
    (3)平面BDF∥平面B1D1H.
    20. 如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=eq \f(1,2)AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
    (1)求证:AP∥平面BEF;
    (2)求证:GH∥平面PAD.
    21. 如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=eq \f(1,2)AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
    (1)求证:AP∥平面BEF;
    (2)求证:GH∥平面PAD.
    22. 如图,在四棱锥S-ABCD中,∠ADC=∠BCD=90°,AD=DC=SA=eq \f(1,2)BC=2,点E,G分别在线段SA,AD上,且SE=AE,AG=GD,F为棱BC上一点,且CF=1.
    证明:平面SCD∥平面EFG.
    文字语言
    图形表示
    符号表示
    判定定理
    如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行
    a⊄α,b⊂α,a∥b⇒a∥α
    性质定理
    一条直线和一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行
    a∥α,a⊂β,α∩β=b⇒a∥b
    文字语言
    图形表示
    符号表示
    判定定理
    如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行
    a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β
    性质
    两个平面平行,则其中一个平面内的直线平行于另一个平面
    α∥β,a⊂α⇒a∥β
    性质定理
    两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行
    α∥β,α∩γ=a,β∩γ=b⇒a∥b
    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题44直线平面垂直的判定与性质(教师版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题44直线平面垂直的判定与性质(教师版),共27页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(教师版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(教师版),共25页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习知识梳理与题型归纳第40讲直线平面平行的判定与性质(学生版): 这是一份2024年新高考数学一轮复习知识梳理与题型归纳第40讲直线平面平行的判定与性质(学生版),共7页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习题型归类与强化测试专题43直线平面平行的判定与性质(学生版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map