|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习题型归类与强化测试专题34平面向量的数量积及其应用(学生版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习题型归类与强化测试专题34平面向量的数量积及其应用(学生版)01
    2024年新高考数学一轮复习题型归类与强化测试专题34平面向量的数量积及其应用(学生版)02
    2024年新高考数学一轮复习题型归类与强化测试专题34平面向量的数量积及其应用(学生版)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习题型归类与强化测试专题34平面向量的数量积及其应用(学生版)

    展开
    这是一份2024年新高考数学一轮复习题型归类与强化测试专题34平面向量的数量积及其应用(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    【考纲要求】
    1.理解平面向量数量积的含义及其物理意义.
    2.了解平面向量的数量积与投影向量的长度的关系.
    3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
    4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
    5.会用向量的方法解决某些简单的平面几何问题.
    6.会用向量方法解决简单的力学问题与其他一些实际问题.
    【考点预测】
    1.平面向量数量积的有关概念
    (1)向量的夹角:已知两个非零向量a和b,O是平面上的任意一点,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB=θ(0≤θ≤π)叫做向量a与b的夹角.
    (2)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,我们把数量|a||b|cs__θ叫做向量a与b的数量积(或内积),记作a·b,即a·b=|a||b|cs__θ.规定:零向量与任一向量的数量积为0,即0·a=0.
    (3)投影向量
    如图,在平面内任取一点O,作eq \(OM,\s\up6(→))=a,eq \(ON,\s\up6(→))=b,过点M作直线ON的垂线,垂足为M1,则eq \(OM1,\s\up6(→))就是向量a在向量b上的投影向量.
    设与b方向相同的单位向量为e,a与b的夹角为θ,则eq \(OM1,\s\up6(→))与e,a,θ之间的关系为eq \(OM1,\s\up6(→))=|a|cs θ e.
    2.平面向量数量积的性质及其坐标表示
    设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
    (1)数量积:a·b=|a||b|cs θ=x1x2+y1y2.
    (2)模:|a|=eq \r(a·a)=eq \r(xeq \\al(2,1)+yeq \\al(2,1)).
    (3)夹角:cs θ=eq \f(a·b,|a||b|)=eq \f(x1x2+y1y2,\r(xeq \\al(2,1)+yeq \\al(2,1))·\r(xeq \\al(2,2)+yeq \\al(2,2))).
    (4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
    (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ eq \r(xeq \\al(2,1)+yeq \\al(2,1))·eq \r(xeq \\al(2,2)+yeq \\al(2,2)).
    3.平面向量数量积的运算律
    (1)a·b=b·a(交换律).
    (2)λa·b=λ(a·b)=a·(λb)(结合律).
    (3)(a+b)·c=a·c+b·c(分配律).
    4.平面几何中的向量方法
    三步曲:(1)用向量表示问题中的几何元素,将几何问题转化为向量问题;
    (2)通过向量运算,研究几何元素之间的关系;
    (3)把运算结果“翻译”成几何关系.
    【常用结论】
    1.平面向量数量积运算的常用公式
    (1)(a+b)·(a-b)=a2-b2;
    (2)(a±b)2=a2±2a·b+b2.
    2.有关向量夹角的两个结论
    已知向量a,b.
    (1)若a与b的夹角为锐角,则a·b>0;若a·b>0,则a与b的夹角为锐角或0.
    (2)若a与b的夹角为钝角,则a·b<0;若a·b<0,则a与b的夹角为钝角或π.
    【方法技巧】
    1.计算平面向量数量积的主要方法
    (1)利用定义:a·b=|a||b|cs〈a,b〉.
    (2)利用坐标运算,若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
    (3)灵活运用平面向量数量积的几何意义.
    2.求平面向量的模的方法
    ①公式法:利用|a|=eq \r(a·a)及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;
    ②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解.
    3.求平面向量的夹角的方法
    ①定义法:cs θ=eq \f(a·b,|a||b|),求解时应求出a·b,|a|,|b|的值或找出这三个量之间的关系;
    ②坐标法.
    (3)两个向量垂直的充要条件
    a⊥b⇔a·b=0⇔|a-b|=|a+b|(其中a≠0,b≠0).
    4.用向量方法解决实际问题的步骤
    二、【题型归类】
    【题型一】平面向量数量积的基本运算
    【典例1】a=(2,1),b=(2,-1),c=(0,1),则(a+b)·c=_________;a·b=________.
    【典例2】在平面四边形ABCD中,已知eq \(AB,\s\up6(→))=eq \(DC,\s\up6(→)),P为CD上一点,eq \(CP,\s\up6(→))=3eq \(PD,\s\up6(→)),|eq \(AB,\s\up6(→))|
    =4,|eq \(AD,\s\up6(→))|=3,eq \(AB,\s\up6(→))与eq \(AD,\s\up6(→))的夹角为θ,且cs θ=eq \f(2,3),则eq \(AP,\s\up6(→))·eq \(PB,\s\up6(→))=________.
    【典例3】在边长为2的正三角形ABC中,M是BC的中点,D是线段AM的中点.①若eq \(BD,\s\up6(→))=xeq \(BA,\s\up6(→))+yeq \(BC,\s\up6(→)),则x+y=________;②eq \(BD,\s\up6(→))·eq \(BM,\s\up6(→))=________.
    【题型二】平面向量数量积的简单应用
    【典例1】设a,b为单位向量,且|a+b|=1,则|a-b|=________.
    【典例2】已知向量a,b满足|a|=5,|b|=6,a·b=-6,则cs〈a,a+b〉等于( )
    A.-eq \f(31,35) B.-eq \f(19,35) C.eq \f(17,35) D.eq \f(19,35)
    【典例3】已知单位向量a,b的夹角为45°,ka-b与a垂直,则k=________.
    【题型三】两平面向量垂直问题
    【典例1】已知向量eq \(AB,\s\up6(→))与eq \(AC,\s\up6(→))的夹角为120°,且|eq \(AB,\s\up6(→))|=3,|eq \(AC,\s\up6(→))|=2.若eq \(AP,\s\up6(→))=λeq \(AB,\s\up6(→))+eq \(AC,\s\up6(→)),且eq \(AP,\s\up6(→))⊥eq \(BC,\s\up6(→)),则实数λ的值为________.
    【典例2】已知向量a,b满足|a|=1,|b|=2,a-b=(eq \r(3),eq \r(2)),则|a+2b|=( )
    A.2eq \r(2) B.2eq \r(5)
    C.eq \r(17) D.eq \r(15)
    【典例3】(多选)设a,b是两个非零向量,则下列命题为假命题的是( )
    A.若|a+b|=|a|-|b|,则a⊥b
    B.若a⊥b,则|a+b|=|a|-|b|
    C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λa
    D.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|
    【题型四】向量数量积的综合应用
    【典例1】在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(cs(A-B),sin(A-B)),n=(cs B,-sin B),且m·n=-eq \f(3,5).
    (1)求sin A的值;
    (2)若a=4eq \r(2),b=5,求角B的大小及向量eq \(BA,\s\up6(→))在eq \(BC,\s\up6(→))方向上的投影.
    【典例2】已知A,B,C分别为△ABC的三边a,b,c所对的角,向量m=(sin A,sin B),n=(cs B,cs A),且m·n=sin 2C.
    (1)求角C的大小;
    (2)若sin A,sin C,sin B成等差数列,且eq \(CA,\s\up6(→))·(eq \(AB,\s\up6(→))-eq \(AC,\s\up6(→)))=18,求边c的长.
    【题型五】平面向量的实际应用
    【典例1】已知平行四边形ABCD,证明:AC2+BD2=2(AB2+AD2).
    【典例2】若平面上的三个力F1,F2,F3作用于一点,且处于平衡状态,已知|F1|=1 N,|F2|=eq \f(\r(6)+\r(2),2) N,F1与F2的夹角为45°,求:
    (1)F3的大小;
    (2)F3与F1夹角的大小.
    三、【培优训练】
    【训练一】在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的内切圆与CA,CB分别切于点D,E,点P是图中阴影区域内的一点(不包含边界).若eq \(CP,\s\up6(→))=xeq \(CD,\s\up6(→))+yeq \(CE,\s\up6(→)),则x+y的值可以是( )
    A.1 B.2
    C.4 D.8
    【训练二】已知f(x)=eq \f(\r(3),2)|sin πx|,A1,A2,A3为图象的顶点,O,B,C,D为f(x)与x轴的交点,线段A3D上有五个不同的点Q1,Q2,…,Q5.记ni=eq \(OA2,\s\up6(—→))·eq \(OQi,\s\up6(—→))(i=1,2,…,5),则n1+…+n5的值为( )
    A.eq \f(15,2)eq \r(3) B.45 C.eq \f(45,2) D.eq \f(15,4)eq \r(3)
    【训练三】定义两个平面向量的一种运算a⊗b=|a|·|b|sina,b,则关于平面向量上述运算的以下结论中,
    ①a⊗b=b⊗a;
    ②λ(a⊗b)=(λa)⊗b;
    ③若a=λb,则a⊗b=0;
    ④若a=λb且λ>0,则(a+b)⊗c=(a⊗c)+(b⊗c).
    正确的序号是________.
    【训练四】在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),|eq \(OC,\s\up6(→))|=1,且∠AOC=θ,其中O为坐标原点.
    (1)若θ=eq \f(3π,4),设点D为线段OA上的动点,求|eq \(OC,\s\up6(→))+eq \(OD,\s\up6(→))|的最小值;
    (2)若θ∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2))),向量m=eq \(BC,\s\up6(→)),n=(1-cs θ,sin θ-2cs θ),求m·n的最小值及对应的θ值.
    【训练五】已知在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(sin A,sin B),n=
    (cs B,cs A),m·n=sin 2C.
    (1)求角C的大小;
    (2)若sin A,sin C,sin B成等差数列,且eq \(CA,\s\up6(→))·(eq \(AB,\s\up6(→))-eq \(AC,\s\up6(→)))=18,求c.
    【训练六】在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,已知向量m=(cs B,2cs2 eq \f(C,2)-1),n=(c,b-2a),且m·n=0.
    (1)求∠C的大小;
    (2)若点D为边AB上一点,且满足eq \(AD,\s\up6(→))=eq \(DB,\s\up6(→)),|eq \(CD,\s\up6(→))|=eq \r(7),c=2eq \r(3),求△ABC的面积.
    四、【强化测试】
    【单选题】
    1.已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )
    A.-eq \f(9,2) B.0 C.3 D.eq \f(15,2)
    2.已知a,b是相互垂直的单位向量,与a,b共面的向量c满足a·c=b·c=2,则c的模为( )
    A.1 B.eq \r(2) C.2 D.2eq \r(2)
    3. 若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则a-b与b的夹角为( )
    A.eq \f(π,6) B.eq \f(π,3) C.eq \f(2π,3) D.eq \f(5π,6)
    4. 已知a=(-2,1),b=(k,-3),c=(1,2),若(a-2b)⊥c,则与b共线的单位向量为( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2\r(5),5),-\f(\r(5),5)))或eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(5),5),\f(\r(5),5)))
    B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(5),5),-\f(\r(5),5)))或eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2\r(5),5),\f(\r(5),5)))
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2\r(5),5),\f(\r(5),5)))
    D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(5),5),\f(\r(5),5)))
    5. 在等腰三角形ABC中,点D是底边AB的中点,若eq \(AB,\s\up6(→))=(1,2),eq \(CD,\s\up6(→))=(2,t),则|eq \(CD,\s\up6(→))|等于( )
    A.eq \r(5) B.5 C.2eq \r(5) D.20
    6. a,b为平面向量,已知a=(2,4),a-2b=(0,8),则a,b夹角的余弦值等于( )
    A.-eq \f(4,5) B.-eq \f(3,5) C.eq \f(3,5) D.eq \f(4,5)
    7. 若向量eq \(OF1,\s\up6(→))=(1,1),eq \(OF2,\s\up6(→))=(-3,-2)分别表示两个力F1,F2,则|F1+F2|为( )
    A.eq \r(10) B.2eq \r(5)
    C.eq \r(5) D.eq \r(15)
    8. 已知a,b,c均为单位向量,a与b的夹角为60°,则(c+a)·(c-2b)的最大值为( )
    A.eq \f(3,2) B.eq \r(3)
    C.2 D.3
    【多选题】
    9. (多选)下列关于向量a,b,c的运算,一定成立的是( )
    A.(a+b)·c=a·c+b·c
    B.(a·b)·c=a·(b·c)
    C.a·b≤|a|·|b|
    D.|a-b|≤|a|+|b|
    10. 如图,点A,B在圆C上,则eq \(AB,\s\up6(→))·eq \(AC,\s\up6(→))的值( )
    A.与圆C的半径有关
    B.与圆C的半径无关
    C.与弦AB的长度有关
    D.与点A,B的位置有关
    11. 设a,b,c是任意的非零平面向量,且相互不共线,则下列命题中的真命题是( )
    A.(a·b)c-(c·a)b=0
    B.|a|-|b|<|a-b|
    C.(b·c)a-(a·c)b不与c垂直
    D.(3a+2b)·(3a-2b)=9|a|2-4|b|2
    12. 已知e1,e2是两个单位向量,λ∈R时,|e1+λe2|的最小值为eq \f(\r(3),2),则|e1+e2|等于( )
    A.1 B.eq \r(3) C.3 D.2
    【填空题】
    13. 设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,那么a与b的数量积等于________.
    14. 已知点M,N满足|eq \(MC,\s\up6(→))|=|eq \(NC,\s\up6(→))|=3,且|eq \(CM,\s\up6(→))+eq \(CN,\s\up6(→))|=2eq \r(5),则M,N两点间的距离为________.
    15. 若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为________.
    16. 已知向量a,b,其中|a|=eq \r(3),|b|=2,且(a-b)⊥a,则向量a和b的夹角是________,a·(a+b)=________.
    【解答题】
    17. 已知向量a=(2,-1),b=(1,x).
    (1)若a⊥(a+b),求|b|的值;
    (2)若a+2b=(4,-7),求向量a与b夹角的大小.
    18. 在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1).
    (1)求以线段AB,AC为邻边的平行四边形两条对角线的长;
    (2)设实数t满足(eq \(AB,\s\up6(→))-teq \(OC,\s\up6(→)))·eq \(OC,\s\up6(→))=0,求t的值.
    19. 已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
    (1)求a与b的夹角θ;
    (2)求|a+b|;
    (3)若eq \(AB,\s\up6(→))=a,eq \(BC,\s\up6(→))=b,求△ABC的面积.
    20. 已知向量m=(eq \r(3)sin x,cs x-1),n=(cs x,cs x+1),若f(x)=m·n.
    (1)求函数f(x)的单调递增区间;
    (2)在Rt△ABC中,角A,B,C的对边分别为a,b,c,若∠A=90°,f(C)=0,c=eq \r(3),CD为∠BCA的角平分线,E为CD的中点,求BE的长.
    21. 在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1).
    (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长;
    (2)设实数t满足(eq \(AB,\s\up6(→))-teq \(OC,\s\up6(→)))·eq \(OC,\s\up6(→))=0,求t的值.
    22. 在△ABC中,角A,B,C的对边分别为a,b,c,且满足(eq \r(2)a-c)eq \(BA,\s\up6(→))·eq \(BC,\s\up6(→))=ceq \(CB,\s\up6(→))·eq \(CA,\s\up6(→)).
    (1)求角B的大小;
    (2)若|eq \(BA,\s\up6(→))-eq \(BC,\s\up6(→))|=eq \r(6),求△ABC面积的最大值.
    相关试卷

    2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题39数列求和(学生版),共8页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题35复数(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题35复数(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归类与强化测试专题40数列的综合应用(学生版): 这是一份2024年新高考数学一轮复习题型归类与强化测试专题40数列的综合应用(学生版),共6页。试卷主要包含了【知识梳理】,【题型归类】,【培优训练】,【强化测试】等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习题型归类与强化测试专题34平面向量的数量积及其应用(学生版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map