- 专题21 概率与统计的综合运用(13大题型)(练习)-2024年高考数学二轮复习讲练测(新教材新高考) 试卷 5 次下载
- 专题21 概率与统计的综合运用(13大核心考点)(课件)-2024年高考数学二轮复习课件(新教材新高考) 课件 1 次下载
- 专题22 新高考新题型第19题新定义压轴解答题归纳(9大题型)(练习)-2024年高考数学二轮复习讲练测(新教材新高考) 试卷 2 次下载
- 专题22 新高考新题型第19题新定义压轴解答题归纳(9大核心考点)(课件)-2024年高考数学二轮复习课件(新教材新高考) 课件 1 次下载
- 技巧01 单选题和多选题的答题技巧(10大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考) 试卷 1 次下载
专题22 新高考新题型第19题新定义压轴解答题归纳(9大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考)
展开TOC \ "1-3" \h \z \u \l "_Tc159338423" PAGEREF _Tc159338423 \h 1
\l "_Tc159338424" PAGEREF _Tc159338424 \h 3
\l "_Tc159338425" PAGEREF _Tc159338425 \h 3
\l "_Tc159338426" PAGEREF _Tc159338426 \h 4
\l "_Tc159338427" PAGEREF _Tc159338427 \h 5
\l "_Tc159338428" 考点一:集合新定义 PAGEREF _Tc159338428 \h 5
\l "_Tc159338429" 考点二:函数与导数新定义 PAGEREF _Tc159338429 \h 7
\l "_Tc159338430" 考点三:立体几何新定义 PAGEREF _Tc159338430 \h 8
\l "_Tc159338431" 考点四:三角函数新定义 PAGEREF _Tc159338431 \h 12
\l "_Tc159338432" 考点五:平面向量与解三角形新定义 PAGEREF _Tc159338432 \h 13
\l "_Tc159338433" 考点六:数列新定义 PAGEREF _Tc159338433 \h 15
\l "_Tc159338434" 考点七:圆锥曲线新定义 PAGEREF _Tc159338434 \h 17
\l "_Tc159338435" 考点八:概率与统计新定义 PAGEREF _Tc159338435 \h 20
\l "_Tc159338436" 考点九:高等数学背景下新定义 PAGEREF _Tc159338436 \h 24
创新意识与创新应用是新时代的主旋律,也是高中数学教学与学习中需要不断渗透与培养的一种基本精神与能力!借助“新定义”,可以巧妙进行数学知识中的概念类比、公式设置、性质应用、知识拓展与创新应用等的交汇与融合,很好地融入创新意识与创新应用.
所谓“新定义”型问题,主要是指在问题中定义了高中数学中没有学过的一些概念、新运算、新符号,要求同学们读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。
1、代数型新定义问题的常见考查形式
(1)概念中的新定义;
(2)运算中的新定义;
(3)规则的新定义等.
2、解决“新定义”问题的方法
在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!
1.(2018•北京)设为正整数,集合,,,,,,2,,,对于集合中的任意元素,,,和,,,记,.
(Ⅰ)当时,若,1,,,1,,求和的值;
(Ⅱ)当时,设是的子集,且满足:对于中的任意元素,,当,相同时,是奇数;当,不同时,是偶数.求集合中元素个数的最大值;
(Ⅲ)给定不小于2的,设是的子集,且满足:对于中的任意两个不同的元素,,,写出一个集合,使其元素个数最多,并说明理由.
2.(2023•北京)数列,的项数均为,且,,2,,,,的前项和分别为,,并规定.对于,1,2,,,定义,,1,2,,,其中,表示数集中最大的数.
(Ⅰ)若,,,,,,求,,,的值;
(Ⅱ)若,且,,2,,,求;
(Ⅲ)证明:存在,,使得.
3.(2022•北京)已知,,,为有穷整数数列.给定正整数,若对任意的,2,,,在中存在,,,,,使得,则称为连续可表数列.
(Ⅰ)判断,1,4是否为连续可表数列?是否为连续可表数列?说明理由;
(Ⅱ)若,,,为连续可表数列,求证:的最小值为4;
(Ⅲ)若,,,为连续可表数列,且,求证:.
4.(2021•北京)设为实数.若无穷数列满足如下三个性质,则称 为数列:
①,且;
②,2,;
③,,2,;,2,.
(Ⅰ)如果数列的前四项为2,,,,那么是否可能为数列?说明理由;
(Ⅱ)若数列是数列,求;
(Ⅲ)设数列的前项和为,是否存在数列,使得恒成立?如果存在,求出所有的;如果不存在,说明理由.
考点一:集合新定义
【例1】(2024·北京顺义·高三统考期末)给定正整数,设集合.若对任意,,,两数中至少有一个属于,则称集合具有性质.
(1)分别判断集合与是否具有性质;
(2)若集合具有性质,求的值;
(3)若具有性质的集合中包含6个元素,且,求集合.
【变式1-1】(2024·北京·高三北京四中校考期末)已知集合,集合,且满足,,与恰有一个成立.对于定义,以及,其中.
例如.
(1)若,,求的值及的最大值;
(2)从中任意删去两个数,记剩下的数的和为,求的最小值(用表示);
(3)对于满足的每一个集合,集合中是否都存在三个不同的元素,,,使得恒成立?请说明理由.
【变式1-2】(2024·北京·高三景山学校校考期末)设集合,如果对于的每一个含有个元素的子集P,P中必有4个元素的和等于,称正整数为集合的一个“相关数”.
(1)当时,判断5和6是否为集合的“相关数”,说明理由;
(2)若为集合的“相关数”,证明:;
(3)给定正整数,求集合的“相关数”m的最小值.
【变式1-3】(2024·北京·101中学校考模拟预测)设A是正整数集的一个非空子集,如果对于任意,都有或,则称A为自邻集.记集合的所有子集中的自邻集的个数为.
(1)直接写出的所有自邻集;
(2)若为偶数且,求证:的所有含5个元素的子集中,自邻集的个数是偶数;
(3)若,求证:.
考点二:函数与导数新定义
【例2】(2024·广东茂名·统考一模)若函数在上有定义,且对于任意不同的,都有,则称为上的“类函数”.
(1)若,判断是否为上的“3类函数”;
(2)若为上的“2类函数”,求实数的取值范围;
(3)若为上的“2类函数”,且,证明:,,.
【变式2-1】(2024·山东·高三校联考阶段练习)定义函数.
(1)求曲线在处的切线斜率;
(2)若对任意恒成立,求k的取值范围;
(3)讨论函数的零点个数,并判断是否有最小值.若有最小值m﹐证明:;若没有最小值,说明理由.
(注:…是自然对数的底数)
【变式2-2】(2024·上海嘉定·统考一模)对于函数,把称为函数的一阶导,令,则将称为函数的二阶导,以此类推得到n阶导.为了方便书写,我们将n阶导用表示.
(1)已知函数,写出其二阶导函数并讨论其二阶导函数单调性.
(2)现定义一个新的数列:在取作为数列的首项,并将作为数列的第项.我们称该数列为的“n阶导数列”
①若函数(),数列是的“n阶导数列”,取Tn为的前n项积,求数列的通项公式.
②在我们高中阶段学过的初等函数中,是否有函数使得该函数的“n阶导数列”为严格减数列且为无穷数列,请写出它并证明此结论.(写出一个即可)
【变式2-3】(2024·上海·高三上海市七宝中学校联考阶段练习)已知函数,,其中为自然对数的底数,设函数,
(1)若,求函数的单调区间,并写出函数有三个零点时实数的取值范围;
(2)当时,分别为函数的极大值点和极小值点,且不等式对任意恒成立,求实数的取值范围.
(3)对于函数,若实数满足,其中F、D为非零实数,则称为函数的“笃志点”.
①已知函数,且函数有且只有3个“笃志点”,求实数a的取值范围;
②定义在R上的函数满足:存在唯一实数m,对任意的实数x,使得恒成立或恒成立.对于有序实数对,讨论函数“笃志点”个数的奇偶性,并说明理由
考点三:立体几何新定义
【例3】(2024·安徽·校联考模拟预测)空间中,两两互相垂直且有公共原点的三条数轴构成直角坐标系,如果坐标系中有两条坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.现有一种空间斜坐标系,它任意两条数轴的夹角均为60°,我们将这种坐标系称为“斜60°坐标系”.我们类比空间直角坐标系,定义“空间斜60°坐标系”下向量的斜60°坐标:分别为“斜60°坐标系”下三条数轴(轴、轴、轴)正方向的单位向量,若向量,则与有序实数组相对应,称向量的斜60°坐标为,记作.
(1)若,,求的斜60°坐标;
(2)在平行六面体中,,,N为线段D1C1的中点.如图,以为基底建立“空间斜60°坐标系”.
①求的斜60°坐标;
②若,求与夹角的余弦值.
【变式3-1】(2024·河南·高三校联考期末)三阶行列式是解决复杂代数运算的算法,其运算法则如下:.若,则称为空间向量与的叉乘,其中(),(),为单位正交基底.以O为坐标原点、分别以的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,已知A,B是空间直角坐标系中异于O的不同两点.
(1)①若,,求;
②证明:.
(2)记的面积为,证明:.
(3)证明:的几何意义表示以为底面、为高的三棱锥体积的6倍.
【变式3-2】(2024·上海普陀·高三校考期末)对于一个三维空间,如果一个平面与一个球只有一个交点,则称这个平面是这个球的切平面.已知在空间直角坐标系中,球的半径为,记平面、平面、平面分别为、、.
(1)若棱长为的正方体、棱长为的正四面体的内切球均为球,求的值;
(2)若球在处有一切平面为,求与的交线方程,并写出它的一个法向量;
(3)如果在球面上任意一点作切平面,记与、、的交线分别为、、,求到、、距离乘积的最小值.
【变式3-3】(2024·全国·高三专题练习)无数次借着你的光,看到未曾见过的世界:国庆七十周年、建党百年天安门广场三千人合唱的磅礴震撼,“930烈士纪念日”向人民英雄敬献花篮仪式的凝重庄严金帆合唱团,这绝不是一个抽象的名字,而是艰辛与光耀的延展,当你想起他,应是四季人间,应是繁星璀璨!这是开学典礼中,我校金帆合唱团的颁奖词,听后让人热血沸腾,让人心向往之.图1就是金帆排练厅,大家都亲切的称之为“六角楼”,其造型别致,可以理解为一个正六棱柱(图2)由上底面各棱向内切割为正六棱台(图3),正六棱柱的侧棱交的延长线于点,经测量,且
(1)写出三条正六棱台的结构特征.
(2)“六角楼”一楼为办公区域,二楼为金帆排练厅,假设排练厅地板恰好为六棱柱中截面,忽略墙壁厚度,估算金帆排练厅对应几何体体积.(棱台体积公式:)
(3)“小迷糊”站在“六角楼”下,陶醉在歌声里.“大聪明”走过来说:“数学是理性的音乐,音乐是感性的数学.学好数学方能更好的欣赏音乐,比如咱们刚刚听到的一个复合音就可以表示为函数,你看这多美妙!”
“小迷糊”:“”
亲爱的同学们,快来帮“小迷糊”求一下的最大值吧.
【变式3-4】(2024·重庆·重庆市石柱中学校校联考一模)正多面体又称为柏拉图立体,是指一个多面体的所有面都是全等的正三角形或正多边形,每个顶点聚集的棱的条数都相等,这样的多面体就叫做正多面体.可以验证一共只有五种多面体.令(均为正整数),我们发现有时候某正多面体的所有顶点都可以和另一个正多面体的一些顶点重合,例如正面体的所有顶点可以与正面体的某些顶点重合,正面体的所有顶点可以与正面体的所有顶点重合,等等.
(1)当正面体的所有顶点可以与正面体的某些顶点重合时,求正面体的棱与正面体的面所成线面角的最大值;
(2)当正面体在棱长为的正面体内,且正面体的所有顶点均为正面体各面的中心时,求正面体某一面所在平面截正面体所得截面面积;
(3)已知正面体的每个面均为正五边形,正面体的每个面均为正三角形.考生可在以下2问中选做1问.
(第一问答对得2分,第二问满分8分,两题均作答,以第一问结果给分)
第一问:求棱长为的正面体的表面积;
第二问:求棱长为的正面体的体积.
考点四:三角函数新定义
【例4】对于定义域R上的函数,如果存在非零常数T,对任意,都有成立,则称为“T函数”.
设函数,判断是否为“T函数”,说明理由;
若函数且的图象与函数的图象有公共点,证明:为“T函数”;
若函数为“T函数”,求实数m的取值范围.
7.将函数的图象按向量平移指的是:当时,图形向右平移m个单位,当时,图形向左平移个单位;当时,图形向上平移n个单位,当时,图形向下平移个单位.已知,将的图象按平移得到函数的图象.
求的解析式;
若函数在区间上至少含30个零点,在所有满足上述条件的中,求的最小值;
对任意的,不等式恒成立,求实数m的取值范围.
【变式4-1】若对于定义在R上的连续函数,存在常数,使得对任意的实数x成立,则称是回旋函数,且阶数为
试判断函数是否是一个阶数为1的回旋函数,并说明理由;
已知是回旋函数,求实数的值;
若回旋函数在恰有100个零点,求实数的值.
考点五:平面向量与解三角形新定义
【例5】已知O为坐标原点,对于函数,称向量为函数的相伴特征向量,同时称函数为向量的相伴函数.
记向量的相伴函数为,若当且时,求的值;
已知,,为的相伴特征向量,,请问在的图象上是否存在一点P,使得若存在,求出P点坐标;若不存在,说明理由;
记向量的相伴函数为,若当时不等式恒成立,求实数k的取值范围.
【变式5-1】如图,半圆O的直径为2cm,A为直径延长线上的点,,B为半圆上任意一点,以AB为一边作等边三角形设
当时,求四边形OACB的周长;
克罗狄斯托勒密所著的《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当对角互补时取等号,根据以上材料,则当线段OC的长取最大值时,求
问:B在什么位置时,四边形OACB的面积最大,并求出面积的最大值.
【变式5-2】将平面直角坐标系中的一列点、、、、,记为,设,其中为与y轴方向相同的单位向量.若对任意的正整数n,都有,则称为T点列.
判断、、、、、是否为T点列,并说明理由;
若为T点列,且任取其中连续三点、、,证明为钝角三角形;
若为T点列,对于正整数k、l、,比较与的大小,并说明理由.
【变式5-3】对于给定的正整数n,记集合,其中元素称为一个n维向量.特别地,称为零向量.
设,,,定义加法和数乘:,
对一组向量,,…,,若存在一组不全为零的实数,,…,,使得,则称这组向量线性相关.否则,称为线性无关.
Ⅰ对,判断下列各组向量是线性相关还是线性无关,并说明理由.
①,;
②,,;
③,,,
Ⅱ已知向量,,线性无关,判断向量,,是线性相关还是线性无关,并说明理由.
Ⅲ已知个向量,,…,线性相关,但其中任意个都线性无关,证明下列结论:
ⅰ如果存在等式,则这些系数,,…,或者全为零,或者全不为零;
ⅱ如果两个等式,同时成立,其中,则
考点六:数列新定义
【例6】(2024·北京·高三北京市第五中学校考阶段练习)若数列满足:,且,则称为一个X数列. 对于一个X数列,若数列满足:,且,则称为的伴随数列.
(1)若X数列中,,,,写出其伴随数列中的值;
(2)若为一个X数列,为的伴随数列.
①证明:“为常数列”是“为等比数列”的充要条件;
②求的最大值.
【变式6-1】(2024·北京西城·北京师大附中校考模拟预测)已知为有限个实数构成的非空集合,设,,记集合和其元素个数分别为,.
设.例如当时,,,,所以.
(1)若,求的值;
(2)设是由3个正实数组成的集合且,证明:为定值;
(3)若是一个各项互不相同的无穷递增正整数数列,对任意,设,.已知,且对任意,求数列的通项公式.
【变式6-2】(2024·上海浦东新·华师大二附中校考模拟预测)已知数列:1,,,3,3,3,,,,,,,即当()时,,记().
(1)求的值;
(2)求当(),试用、的代数式表示();
(3)对于,定义集合是的整数倍,,且,求集合中元素的个数.
【变式6-3】(2024·全国·高三专题练习)对于无穷数列,若存在正整数,使得对一切正整数都成立,则称无穷数列是周期为的周期数列.
(1)已知无穷数列是周期为的周期数列,且,,是数列的前项和,若对一切正整数恒成立,求常数的取值范围;
(2)若无穷数列和满足,求证:“是周期为的周期数列”的充要条件是“是周期为的周期数列,且”;
(3)若无穷数列和满足,且,是否存在非零常数,使得是周期数列?若存在,请求出所有满足条件的常数;若不存在,请说明理由.
考点七:圆锥曲线新定义
【例7】直线族是指具有某种共同性质的直线的全体.如:方程中,当k取给定的实数时,表示一条直线;当k在实数范围内变化时,表示过点的直线族不含y轴记直线族其中为,直线族其中为
分别判断点,是否在的某条直线上,并说明理由;
对于给定的正实数,点不在的任意一条直线上,求的取值范围用表示;
直线族的包络被定义为这样一条曲线:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上每一点处的切线都是该直线族中的某条直线.求的包络和的包络.
【变式7-1】(2024·贵州贵阳·高三统考期末)阅读材料:
在平面直角坐标系中,若点与定点(或的距离和它到定直线(或)的距离之比是常数,则,化简可得,设,则得到方程,所以点的轨迹是一个椭圆,这是从另一个角度给出了椭圆的定义.这里定点是椭圆的一个焦点,直线称为相应于焦点的准线;定点是椭圆的另一个焦点,直线称为相应于焦点的准线.
根据椭圆的这个定义,我们可以把到焦点的距离转化为到准线的距离.若点在椭圆上,是椭圆的右焦点,椭圆的离心率,则点到准线的距离为,所以,我们把这个公式称为椭圆的焦半径公式.
结合阅读材料回答下面的问题:
已知椭圆的右焦点为,点是该椭圆上第一象限的点,且轴,若直线是椭圆右准线方程,点到直线的距离为8.
(1)求点的坐标;
(2)若点也在椭圆上且的重心为,判断是否能构成等差数列?如果能,求出该等差数列的公差,如果不能,说明理由.
【变式7-2】(2024·重庆·高三重庆八中校考阶段练习)类似平面解析几何中的曲线与方程,在空间直角坐标系中,可以定义曲面(含平面)的方程,若曲面和三元方程之间满足:①曲面上任意一点的坐标均为三元方程的解;②以三元方程的任意解为坐标的点均在曲面上,则称曲面的方程为,方程的曲面为.已知曲面的方程为.
(1)已知直线过曲面上一点,以为方向向量,求证:直线在曲面上(即上任意一点均在曲面上);
(2)已知曲面可视为平面中某双曲线的一支绕轴旋转一周所得的旋转面;同时,过曲面上任意一点,有且仅有两条直线,使得它们均在曲面上.设直线在曲面上,且过点,求异面直线与所成角的余弦值.
【变式7-3】(2024·广东中山·高三统考期末)类比平面解析几何的观点,在空间中,空间平面和曲面可以看作是适合某种条件的动点的轨迹,在空间直角坐标系中,空间平面和曲面的方程是一个三元方程.
(1)类比平面解析几何中直线的方程,直接写出:
①过点,法向量为的平面的方程;
②平面的一般方程;
③在x,y,z轴上的截距分别为a,b,c的平面的截距式方程();(不需要说明理由)
(2)设为空间中的两个定点,,我们将曲面定义为满足的动点P的轨迹,试建立一个适当的空间直角坐标系,并推导出曲面的方程.
【变式7-4】(2024·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当且时,我们把方程表示的椭圆称为椭圆的相似椭圆.
(1)如图,已知为上的动点,延长至点,使得的垂直平分线与交于点,记点的轨迹为曲线,求的方程;
(2)在条件(1)下,已知椭圆是椭圆的相似椭圆,是椭圆的左、右顶点.点是上异于四个顶点的任意一点,当(为曲线的离心率)时,设直线与椭圆交于点,直线与椭圆交于点,求的值.
【变式7-5】(2024·全国·高三专题练习)在平面直角坐标系中,定义为两点、的“切比雪夫距离”,例如:点,点,因为,所以点与点的“切比雪夫距离”为,记为.
(1)已知点,B为x轴上的一个动点,
①若,写出点B的坐标;
②直接写出的最小值
(2)求证:对任意三点A,B,C,都有;
(3)定点,动点满足,若动点P所在的曲线所围成图形的面积是36,求r的值.
【变式7-6】(2024·上海黄浦·高三格致中学校考开学考试)定义:若椭圆上的两个点满足,则称为该椭圆的一个“共轭点对”,记作.已知椭圆的一个焦点坐标为,且椭圆过点.
(1)求椭圆的标准方程;
(2)求“共轭点对”中点所在直线的方程;
(3)设为坐标原点,点在椭圆上,且,(2)中的直线与椭圆交于两点,且点的纵坐标大于0,设四点在椭圆上逆时针排列.证明:四边形的面积小于.
考点八:概率与统计新定义
【例8】在平面直角坐标系xOy中,设点集…,,,……,,令从集合中任取两个不同的点,用随机变量X表示它们之间的距离.
当时,求X的概率分布;
对给定的正整数,求概率用n表示
【变式8-1】(2024·河北·高三雄县第一高级中学校联考期末)在信息论中,熵(entrpy)是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量.这里,“消息”代表来自分布或数据流中的事件、样本或特征.(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大)来自信源的另一个特征是样本的概率分布.这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息.由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的.事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵).熵的单位通常为比特,但也用、、计量,取决于定义用到对数的底.采用概率分布的对数作为信息的量度的原因是其可加性.例如,投掷一次硬币提供了1的信息,而掷次就为位.更一般地,你需要用位来表示一个可以取个值的变量.在1948年,克劳德•艾尔伍德•香农将热力学的熵,引入到信息论,因此它又被称为香农滳.而正是信息熵的发现,使得1871年由英国物理学家詹姆斯•麦克斯韦为了说明违反热力学第二定律的可能性而设想的麦克斯韦妖理论被推翻.设随机变量所有取值为,定义的信息熵,(,).
(1)若,试探索的信息熵关于的解析式,并求其最大值;
(2)若,(),求此时的信息熵.
【变式8-2】(2024·北京·高三阶段练习)设离散型随机变量X和Y有相同的可能取值,它们的分布列分别为,,,,.指标可用来刻画X和Y的相似程度,其定义为.设.
(1)若,求;
(2)若,求的最小值;
(3)对任意与有相同可能取值的随机变量,证明:,并指出取等号的充要条件
【变式8-3】(2024·山西朔州·高三校考开学考试)某校20名学生的数学成绩和知识竞赛成绩如下表:
计算可得数学成绩的平均值是,知识竞赛成绩的平均值是,并且,,.
(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01);
(2)设,变量和变量的一组样本数据为,其中两两不相同,两两不相同.记在中的排名是第位,在中的排名是第位,.定义变量和变量的“斯皮尔曼相关系数”(记为)为变量的排名和变量的排名的样本相关系数.
(i)记,.证明:;
(ii)用(i)的公式求得这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”约为0.91,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.
注:参考公式与参考数据.
;;.
【变式8-4】(2024·安徽合肥·合肥一六八中学校考模拟预测)在一个典型的数字通信系统中,由信源发出携带着一定信息量的消息,转换成适合在信道中传输的信号,通过信道传送到接收端.有干扰无记忆信道是实际应用中常见的信道,信道中存在干扰,从而造成传输的信息失真.在有干扰无记忆信道中,信道输入和输出是两个取值的随机变量,分别记作和.条件概率,描述了输入信号和输出信号之间统计依赖关系,反映了信道的统计特性.随机变量的平均信息量定义为:.当时,信道疑义度定义为
(1)设有一非均匀的骰子,若其任一面出现的概率与该面上的点数成正比,试求扔一次骰子向上的面出现的点数的平均信息量;
(2)设某信道的输入变量与输出变量均取值0,1.满足:.试回答以下问题:
①求的值;
②求该信道的信道疑义度的最大值.
【变式8-5】(2024·北京海淀·统考模拟预测)对于数组,各项均为自然数,如下定义该数组的放缩值:三个数最大值与最小值的差.如果放缩值m≥1,可进行如下操作:若a、b、c最大的数字是唯一的,把最大的数减2,剩下的两个数一共加2,且每个数得到的相等;若a、b、c最大的数有两个,则把最大的数各减1,第三个数加上最大数共减少的值.此为第一次操作,记为放缩值记为,可继续对再次进行该操作,操作n次以后的结果记为,放缩值记为.
(1)若,求的值
(2)已知的放缩值记为t,且.若n=1,2,3......时,均有,若,求集合
(3)设集合中的元素是以4为公比均为正整数的等比数列中的项,,且,在一个集合中有唯一确定的数.证明:存在满足=0.
考点九:高等数学背景下新定义
【例9】(2024·河南·统考模拟预测)离散对数在密码学中有重要的应用.设是素数,集合,若,记为除以的余数,为除以的余数;设,两两不同,若,则称是以为底的离散对数,记为.
(1)若,求;
(2)对,记为除以的余数(当能被整除时,).证明:,其中;
(3)已知.对,令.证明:.
【变式9-1】(2024·北京海淀·高三中关村中学校考阶段练习)设数阵,其中.设,其中且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”表示“将经过变换得到,再将经过变换得到以此类推,最后将经过变换得到.记数阵中四个数的和为.
(1)若,写出经过变换后得到的数阵,并求的值;
(2)若,求的所有可能取值的和;
(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.
【变式9-2】(2024·山东济南·高三统考期末)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数,,函数在处的阶帕德近似定义为:,且满足:,,,.已知在处的阶帕德近似为.注:
(1)求实数,的值;
(2)求证:;
(3)求不等式的解集,其中.
【变式9-3】(2024·安徽六安·安徽省舒城中学校考模拟预测)罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,其他两个分别为:拉格朗日中值定理、柯西中值定理.罗尔定理描述如下:如果 上的函数满足以下条件:①在闭区间上连续,②在开区间内可导,③,则至少存在一个,使得.据此,解决以下问题:
(1)证明方程在内至少有一个实根,其中;
(2)已知函数在区间内有零点,求的取值范围.
考点要求
考题统计
考情分析
集合新定义
2018年北京卷第20题,14分
【命题预测】
2024年九省联考之后,第19题将考查新定义问题。现在也有部分地区考试采用该结构考试,比如安徽合肥一中省十联考等。预测2024年新高考试卷第19题结构考查新定义问题,压轴题,难度比较大.
数列新定义
2023年北京卷第21题,15分
2022年北京卷第21题,15分
2021年北京卷第21题,15分
学生编号i
1
2
3
4
5
6
7
8
9
10
数学成绩
100
99
96
93
90
88
85
83
80
77
知识竞赛成绩
290
160
220
200
65
70
90
100
60
270
学生编号i
11
12
13
14
15
16
17
18
19
20
数学成绩
75
74
72
70
68
66
60
50
39
35
知识竞赛成绩
45
35
40
50
25
30
20
15
10
5
专题22 新高考新题型第19题新定义压轴解答题归纳(9大题型)(练习)-2024年高考数学二轮复习讲练测(新教材新高考): 这是一份专题22 新高考新题型第19题新定义压轴解答题归纳(9大题型)(练习)-2024年高考数学二轮复习讲练测(新教材新高考),文件包含专题22新高考新题型第19题新定义压轴解答题归纳9大题型练习原卷版docx、专题22新高考新题型第19题新定义压轴解答题归纳9大题型练习解析版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
九省联考新题型第19题新定义压轴解答题全归纳: 这是一份九省联考新题型第19题新定义压轴解答题全归纳,文件包含新高考新题型第19题新定义压轴解答题归纳解析版pdf、新高考新题型第19题新定义压轴解答题归纳学生版pdf等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。
2024年新高考数学新结构题型第19题考点预测之创新定义题型: 这是一份2024年新高考数学新结构题型第19题考点预测之创新定义题型,文件包含2024年新高考新结构题型第19题考点预测之创新定义题型解析版pdf、2024年新高考新结构题型第19题考点预测之创新定义题型学生版pdf等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。