专题06 一次方程(组)及其应用(共22题)-中考数学真题分项汇编(全国通用)
展开1.(2023·江苏无锡·统考中考真题)下列4组数中,不是二元一次方程的解是( )
A.B.C.D.
2.(2023·湖南永州·统考中考真题)关于x的一元一次方程的解为,则m的值为( )
A.3B.C.7D.
3.(2023·山东泰安·统考中考真题)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两.根据题意得( )
A.B.
C.D.
4.(2023·山东日照·统考中考真题)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为( )
A.B.
C.D.
5.(2023·四川巴中·统考中考真题)某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
A.6B.8C.12D.16
6.(2023·辽宁营口·统考中考真题)2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题意,可列方程组为( )
A.B.
C.D.
7.(2023·山东·统考中考真题)常言道:失之毫厘,谬以千里.当人们向太空发射火箭或者描述星际位置时,需要非常准确的数据.的角真的很小.把整个圆等分成360份,每份这样的弧所对的圆心角的度数是..若一个等腰三角形的腰长为1千米,底边长为4.848毫米,则其顶角的度数就是.太阳到地球的平均距离大约为千米.若以太阳到地球的平均距离为腰长,则顶角为的等腰三角形底边长为( )
A.24.24千米B.72.72千米C.242.4千米D.727.2千米
二、填空题
8.(2023·河南·统考中考真题)方程组的解为 .
9.(2023·浙江嘉兴·统考中考真题)我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花钱买了只鸡.若公鸡有8只,设母鸡有只,小鸡有只,可列方程组为 .
10.(2023·四川南充·统考中考真题)小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N和0.6m,当动力臂由1.5m增加到2m时,撬动这块石头可以节省 N的力.(杠杆原理:阻力阻力臂动力动力臂)
11.(2023·湖南怀化·统考中考真题)定义新运算:,其中,,,为实数.例如:.如果,那么 .
12.(2023·山东·统考中考真题)《九章算术》中有一个问题:“今有共买物,人出八,盈三;人出七,不足四、问人数、物价各几何?”题目大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?设有x人,该物品价值y元,根据题意列方程组: .
三、解答题
13.(2023·四川乐山·统考中考真题)解二元一次方程组:.
14.(2023·四川雅安·统考中考真题)李叔叔批发甲、乙两种蔬菜到菜市场去卖,已知甲、乙两种蔬菜的批发价和零售价如下表所示:
(1)若他批发甲、乙两种蔬菜共花元.求批发甲乙两种蔬菜各多少千克?(列方程或方程组求解)
(2)若他批发甲、乙两种蔬菜共花m元,设批发甲种蔬菜,求m与n的函数关系式;
(3)在(2)的条件下,全部卖完蔬菜后要保证利润不低于元,至少批发甲种蔬菜多少千克?
15.(2023·河北·统考中考真题)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:
在第一局中,珍珍投中A区4次,B区2次,脱靶4次.
(1)求珍珍第一局的得分;
(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.
16.(2023·湖北黄冈·统考中考真题)创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.若购买3个A型垃圾桶和4个B型垃圾桶共需要580元,购买6个A型垃圾桶和5个B型垃圾桶共需要860元.
(1)求两种型号垃圾桶的单价;
(2)若需购买A,B两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A型垃圾桶多少个?
17.(2023·湖南·统考中考真题)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共个班级参加.
(1)比赛积分规定:每场比赛都要分出胜负,胜一场积分,负一场积分.某班级在场比赛中获得总积分为分,问该班级胜负场数分别是多少?
(2)投篮得分规则:在分线外投篮,投中一球可得分,在分线内含分线投篮,投中一球可得分,某班级在其中一场比赛中,共投中个球只有分球和分球,所得总分不少于分,问该班级这场比赛中至少投中了多少个分球?
18.(2023·辽宁·统考中考真题)某礼品店经销A,B两种礼品盒,第一次购进A种礼品盒10盒,B种礼品盒15盒,共花费2800元;第二次购进A种礼品盒6盒,B种礼品盒5盒,共花费1200元
(1)求购进A,B两种礼品盒的单价分别是多少元;
(2)若该礼品店准备再次购进两种礼品盒共40盒,总费用不超过4500元,那么至少购进A种礼品盒多少盒?
19.(2023·山东枣庄·统考中考真题)对于任意实数a,b,定义一种新运算:,例如:,.根据上面的材料,请完成下列问题:
(1)___________,___________;
(2)若,求x的值.
20.(2023·四川达州·统考中考真题)某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.
(1)分别求出每件豆笋、豆干的进价;
(2)某特产店计划用不超过元购进豆笋、豆干共件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?
(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?
21.(2023·湖北恩施·统考中考真题)为积极响应州政府“悦享成长·书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.
(1)男装、女装的单价各是多少?
(2)如果参加活动的男生人数不超过女生人数的,购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?
22.(2023·山东日照·统考中考真题)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为的正方体无盖木盒,B种规格是长、宽、高各为,,的长方体无盖木盒,如图1.现有200张规格为的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.
(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材__________张;
(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;
(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.
品名
甲蔬菜
乙蔬菜
批发价/(元/kg)
零售价/(元/kg)
投中位置
A区
B区
脱靶
一次计分(分)
3
1
专题08 不等式(组)及其应用(共30道)-中考数学真题分项汇编(全国通用): 这是一份专题08 不等式(组)及其应用(共30道)-中考数学真题分项汇编(全国通用),文件包含专题08不等式组及其应用共30道原卷版docx、专题08不等式组及其应用共30道解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
专题08 不等式(组)及其应用(48题)-中考数学真题分项汇编(全国通用): 这是一份专题08 不等式(组)及其应用(48题)-中考数学真题分项汇编(全国通用),文件包含专题08不等式组及其应用原卷版docx、专题08不等式组及其应用解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
专题06 一次方程(组)及其应用(共22题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题06 一次方程(组)及其应用(共22题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题06一次方程组及其应用共22题原卷版docx、专题06一次方程组及其应用共22题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。