专题30 新定义与阅读理解创新型问题(共12道)-中考数学真题分项汇编(全国通用)
展开一、单选题
1.(2023·湖南娄底·统考中考真题)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示,(,n、m为正整数);例如:,,则( )
A.B.C.D.
【答案】C
【分析】根据新定义分别进行计算比较即可得解.
【详解】解:∵,
∴,
A选项,,
B选项,,
C选项,,
D选项,,
故选C.
【点睛】本题考查了新定义运算以及求代数式的值.正确理解新定义是解题的关键.
2.(2023·湖南娄底·统考中考真题)我国南宋著名数学家秦九韶在他的著作《数学九章》一书中,给出了这样的一个结论:三边分别为a、b、c的的面积为.的边a、b、c所对的角分别是∠A、∠B、∠C,则.下列结论中正确的是( )
A.B.
C.D.
【答案】A
【分析】本题利用三角函数间的关系和面积相等进行变形解题即可.
【详解】解:∵,,
∴
即,
,
,
故选:A.
【点睛】本题考查等式利用等式的性质解题化简,熟悉是解题的关键.
二、填空题
3.(2023·湖南娄底·统考中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移 米(请用关于a的代数式表示),才能使得这个同学之间的距离与原来n个同学之间的距离相等.
【答案】
【分析】由第一次操作可得:,则,设第二次操作时每位同学向后移动了x米,可得,解得,再代入化简即可.
【详解】解:由第一次操作可得:,
∴,
设第二次操作时每位同学向后移动了x米,则
,
∴,
故答案为:
【点睛】本题考查的是一元一次方程的应用,分式的化简,准确的理解题意确定相等关系是解本题的关键.
4.(2023·四川德阳·统考中考真题)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则 .
【答案】39
【分析】设第一列中间的数为,则三个数之和为,再一次把表格的每一个数据填好,从而可得答案.
【详解】解:如图,设第一列中间的数为,则三个数之和为,可得:
∴,
故答案为:39
【点睛】本题考查的是列代数式,整式的加减运算的应用,理解题意,设出合适的未知数是解本题的关键.
5.(2023·湖南·统考中考真题)毛主席在《七律二首•送瘟神》中写道“坐地日行八万里,巡天遥看一千河”,我们把地球赤道看成一个圆,这个圆的周长大约为“八万里”.对宇宙千百年来的探索与追问,是中华民族矢志不渝的航天梦想.从古代诗人屈原发出的《天问》,到如今我国首次火星探测任务被命名为“天问一号”,太空探索无上境,伟大梦想不止步.2021年5月15日,我国成功实现火星着陆.科学家已经探明火星的半径大约是地球半径的,若把经过火星球心的截面看成是圆形的,则该圆的周长大约为 万里.
【答案】4
【分析】先求出地球的半径,再根据火星的半径大约是地球半径的,即可求出答案.
【详解】解:设地球的半径为万里,
则,
解得,
∴火星的半径为万里,
∴经过火星球心的截面的圆的周长大约为万里.
故答案为:.
【点睛】本题考查了圆的周长,熟练掌握圆的周长公式是关键.
三、多选题
6.(2023·山东潍坊·统考中考真题)发动机的曲柄连杆将直线运动转化为圆周运动,图①是发动机的实物剖面图,图②是其示意图.图②中,点A在直线l上往复运动,推动点B做圆周运动形成,与表示曲柄连杆的两直杆,点C、D是直线l与的交点;当点A运动到E时,点B到达C;当点A运动到F时,点B到达D.若,,则下列结论正确的是( )
A.B.
C.当与相切时,D.当时,
【答案】AC
【分析】如图,由题意可得:,,,,从而可判断A,B,如图,当与相切时,求解,可得,可判断C;当时,如图,可得,,,可判断D;从而可得答案.
【详解】解:如图,由题意可得:
,,,,
∴,故A符合题意;
,故B不符合题意;
如图,当与相切时,
∴,
∴,
∴,故C符合题意;
当时,如图,
∴,
∴,,
∴,故D不符合题意;
故选AC
【点睛】本题考查的是线段的和差运算,圆的切线的性质,勾股定理的应用,理解题意熟练的利用数形结合的方法解题是关键.
四、解答题
7.(2023·江苏南通·统考中考真题)定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.
(1)函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由;
(2)点与其“级变换点” 分别在直线,上,在,上分别取点,.若,求证:;
(3)关于x的二次函数的图象上恰有两个点,这两个点的“1级变换点”都在直线上,求n的取值范围.
【答案】(1)存在,
(2)见解析
(3)n的取值范围为且
【分析】(1)根据“级变换点”定义求解即可;
(2)求出点的坐标为,得到直线,的解析式分别为和,根据进行证明.
(3)由题意得,二次函数的图象上的点的“1级变换点”都在函数的图象上,得到函数的图象与直线必有公共点.分当时和当,时分类讨论即可.
【详解】(1)解:函数的图象上存在点的“级变换点”
根据“级变换点”定义,点的“级变换点”为,
把点代入中,
得,解得.
(2)证明:点为点的“级变换点”,
点的坐标为.
直线,的解析式分别为和.
当时,.
,
.
,
.
.
(3)解:由题意得,二次函数的图象上的点的
“1级变换点”都在函数的图象上.
由,整理得.
,
函数的图象与直线必有公共点.
由得该公共点为.
①当时,由得.
又得,
且.
②当,时,两图象仅有一个公共点,不合题意,舍去.
综上,n的取值范围为且.
【点睛】本题考查解一元一次不等式,根据题意理解新定义是解题的关键.
8.(2023·陕西·统考中考真题)(1)如图①,在中,,,.若的半径为4,点在上,点在上,连接,求线段的最小值;
(2)如图②所示,五边形是某市工业新区的外环路,新区管委会在点处,点处是该市的一个交通枢纽.已知:,,.根据新区的自然环境及实际需求,现要在矩形区域内(含边界)修一个半径为的圆型环道;过圆心,作,垂足为,与交于点.连接,点在上,连接.其中,线段、及是要修的三条道路,要在所修道路、之和最短的情况下,使所修道路最短,试求此时环道的圆心到的距离的长.
【答案】(1)
(2)
【分析】(1)连接,,过点作,垂足为,则,由直角三角形的性质得出,则可得出答案;
(2)分别在,上作,连接,、、、.证出四边形是平行四边形.由平行四边形的性质得出.当点在上时,取得最小值.作,使圆心在上,半径,作,垂足为,并与交于点.证明△△,由相似三角形的性质得出,求出的长可得出答案.
【详解】解:(1)如图①,连接,,过点作,垂足为,
则.
半径为4,
,
.,
,
,
,
线段的最小值为;
(2)如图②,分别在,上作,
连接,、、、.
,,,
四边形是平行四边形.
.
,
,
当点在上时,取得最小值.
作,使圆心在上,半径,
作,垂足为,并与交于点.
∴,
△△,
,
在矩形区域内(含边界),
当与相切时,最短,即.
此时,也最短.
,
也最短.
,
,
此时环道的圆心到的距离的长为.
【点睛】本题是圆的综合题,考查了等腰三角形的性质,切线的性质,平行四边形的判定与性质,相似三角形的判定与性质,解直角三角形,熟练掌握以上知识是解题的关键.
9.(2023·山东济南·统考中考真题)综合与实践
如图1,某兴趣小组计划开垦一个面积为的矩形地块种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为.
【问题提出】
小组同学提出这样一个问题:若,能否围出矩形地块?
【问题探究】
小颖尝试从“函数图象”的角度解决这个问题:
设为,为.由矩形地块面积为,得到,满足条件的可看成是反比例函数的图象在第一象限内点的坐标;木栏总长为,得到,满足条件的可看成一次函数的图象在第一象限内点的坐标,同时满足这两个条件的就可以看成两个函数图象交点的坐标.
如图2,反比例函数的图象与直线:的交点坐标为和_________,因此,木栏总长为时,能围出矩形地块,分别为:,;或___________m,__________m.
(1)根据小颖的分析思路,完成上面的填空.
【类比探究】
(2)若,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.
【问题延伸】
当木栏总长为时,小颖建立了一次函数.发现直线可以看成是直线通过平移得到的,在平移过程中,当过点时,直线与反比例函数的图象有唯一交点.
(3)请在图2中画出直线过点时的图象,并求出的值.
【拓展应用】
小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“与图象在第一象限内交点的存在问题”.
(4)若要围出满足条件的矩形地块,且和的长均不小于,请直接写出的取值范围.
【答案】(1);4;2
(2)不能围出,理由见解析
(3)图见解析,;(4)
【分析】(1)联立反比例函数和一次函数表达式,求出交点坐标,即可解答;
(2)根据得出,,在图中画出的图象,观察是否与反比例函数图像有交点,若有交点,则能围成,否则,不能围成;
(3)过点作的平行线,即可作出直线的图象,将点代入,即可求出a的值;
(4)根据存在交点,得出方程有实数根,根据根的判别式得出,再得出反比例函数图象经过点,,则当与图象在点左边,点右边存在交点时,满足题意;根据图象,即可写出取值范围.
【详解】解:(1)∵反比例函数,直线:,
∴联立得:,
解得:,,
∴反比例函与直线:的交点坐标为和,
当木栏总长为时,能围出矩形地块,分别为:,;或,.
故答案为:4;2.
(2)不能围出.
∵木栏总长为,
∴,则,
画出直线的图象,如图中所示:
∵与函数图象没有交点,
∴不能围出面积为的矩形;
(3)如图中直线所示,即为图象,
将点代入,得:,
解得;
(4)根据题意可得∶ 若要围出满足条件的矩形地块, 与图象在第一象限内交点的存在问题,
即方程有实数根,
整理得:,
∴,
解得:,
把代入得:,
∴反比例函数图象经过点,
把代入得:,解得:,
∴反比例函数图象经过点,
令,,过点,分别作直线的平行线,
由图可知,当与图象在点A左边,点B右边存在交点时,满足题意;
把代入得:,
解得:,
∴.
【点睛】本题主要考查了反比例函数和一次函数综合,解题的关键是正确理解题意,根据题意得出等量关系,掌握待定系数法,会根据函数图形获取数据.
10.(2023·浙江·统考中考真题)根据以下素材,探究完成任务.
【答案】任务一:4m;任务二:;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角
【分析】任务一:建立直角坐标系,由题意得:抛物线的顶点坐标为,设抛物线的解析式为,过点,利用待定系数法求出解析式,当时求出x的值即可得到;
任务二:建立直角坐标系,求出任务二的抛物线解析式,得到顶点纵坐标,与任务一的纵坐标相减即可;
任务三:根据题意给出合理的建议即可.
【详解】任务一:建立如图所示的直角坐标系,
由题意得:抛物线的顶点坐标为,
设抛物线的解析式为,过点,
∴,
解得,
∴,
当时,,
得(舍去),
∴素材1中的投掷距离为4m;
(2)建立直角坐标系,如图,
设素材2中抛物线的解析式为,
由题意得,过点,
∴,
解得,
∴
∴顶点纵坐标为,
(m),
∴素材2和素材1中球的最大高度的变化量为;
任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.
【点睛】此题考查了二次函数的实际应用,求函数解析式,求抛物线与坐标轴的距离,正确理解题意建立恰当的直角坐标系是解题的关键.
11.(2023·江苏宿迁·统考中考真题)规定:若函数的图像与函数的图像有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.
(1)下列三个函数①;②;③,其中与二次函数互为“兄弟函数”的是________(填写序号);
(2)若函数与互为“兄弟函数”,是其中一个“兄弟点”的横坐标.
①求实数a的值;
②直接写出另外两个“兄弟点”的横坐标是________、________;
(3)若函数(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为、、,且,求的取值范围.
【答案】(1)②
(2);、
(3)
【分析】(1)在平面直角坐标系中作出;;;图像,结合“兄弟函数”定义即可得到答案;
(2)①根据“兄弟函数”定义,当时,求出值,列方程求解即可得到答案;②联立方程组求解即可得到答案;
(3)根据“兄弟函数”定义,联立方程组,分类讨论,由,按照讨论结果求解,即可得到答案.
【详解】(1)解:作出;;;图像,如图所示:
与图像有三个不同的公共点,
根据“兄弟函数”定义,与二次函数互为“兄弟函数”的是②,
故答案为:②;
(2)解:①函数与互为“兄弟函数”,是其中一个“兄弟点”的横坐标,
,则,解得;
②联立,即,
是其中一个解,
因式分解得,则,解得,
另外两个“兄弟点”的横坐标是、;
(3)解:在平面直角坐标系中作出(m为常数)与图像,如图所示:
联立 ,即,
①当时,,即,当时,;
②当时,,即,由①中,则,;
由图可知,两个函数的交点只能在第二象限,从而,再根据三个“兄弟点”的横坐标分别为、、,且,
,,,
,
由得到,即.
【点睛】本题考查函数综合,涉及新定义函数,搞懂题意,按照“兄弟函数”、“兄弟点”定义数形结合是解决问题的关键.
12.(2023·湖南·统考中考真题)我们约定:若关于x的二次函数与同时满足,则称函数与函数互为“美美与共”函数.根据该约定,解答下列问题:
(1)若关于x的二次函数与互为“美美与共”函数,求k,m,n的值;
(2)对于任意非零实数r,s,点与点始终在关于x的函数的图像上运动,函数与互为“美美与共”函数.
①求函数的图像的对称轴;
②函数的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;
(3)在同一平面直角坐标系中,若关于x的二次函数与它的“美美与共”函数的图像顶点分别为点A,点B,函数的图像与x轴交于不同两点C,D,函数的图像与x轴交于不同两点E,F.当时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.
【答案】(1)k的值为,m的值为3,n的值为2
(2)①函数y2的图像的对称轴为;②函数的图像过两个定点,,理由见解析
(3)能构成正方形,此时
【分析】(1)根据题意得到即可解答;
(2)①求出的对称轴,得到,表示出的解析式即可求解;②,令求解即可;
(3)由题意可知,得到A、B的坐标,表示出,根据且,得到,分和两种情况求解即可.
【详解】(1)解:由题意可知:,
∴.
答:k的值为,m的值为3,n的值为2.
(2)解:①∵点与点始终在关于x的函数的图像上运动,
∴对称轴为,
∴,
∴,
∴对称轴为.
答:函数的图像的对称轴为.
②,令,解得,
∴过定点,.
答:函数y2的图像过定点,.
(3)解:由题意可知,,
∴,
∴, ,
∵且,
∴;
①若,则,
要使以A,B,C,D为顶点的四边形能构成正方形,
则为等腰直角三角形,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴;
②若,则A、B关于y轴对称,以A,B,C,D为顶点的四边形不能构成正方形,
综上,以A,B,C,D为顶点的四边形能构成正方形,此时.
【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.
16
7
4
16
7
4
如何把实心球掷得更远?
素材1
小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面,当球到OA的水平距离为时,达到最大高度为.
素材2
根据体育老师建议,第二次练习时,小林在正前方处(如图)架起距离地面高为的横线.球从点A处被抛出,恰好越过横线,测得投掷距离.
问题解决
任务1
计算投掷距离
建立合适的直角坐标系,求素材1中的投掷距离.
任务2
探求高度变化
求素材2和素材1中球的最大高度的变化量
任务3
提出训练建议
为了把球掷得更远,请给小林提出一条合理的训练建议.
专题30 新定义与阅读理解创新型问题(共31题)--2023年中考数学真题分项汇编(全国通用): 这是一份专题30 新定义与阅读理解创新型问题(共31题)--2023年中考数学真题分项汇编(全国通用),文件包含新定义与阅读理解创新型问题共31题解析版pdf、新定义与阅读理解创新型问题共31题学生版pdf等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
专题30 新定义与阅读理解创新型问题(共31题)--2023年中考数学真题分项汇编(全国通用): 这是一份专题30 新定义与阅读理解创新型问题(共31题)--2023年中考数学真题分项汇编(全国通用),文件包含新定义与阅读理解创新型问题共31题解析版pdf、新定义与阅读理解创新型问题共31题学生版pdf等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
专题30 新定义与阅读理解创新型问题(共12道)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题30 新定义与阅读理解创新型问题(共12道)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题30新定义与阅读理解创新型问题共12道原卷版docx、专题30新定义与阅读理解创新型问题共12道解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。