专题32 函数与几何综合问题(共10道)-中考数学真题分项汇编(全国通用)
展开1.(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,的一条直角边在x轴上,点A的坐标为;中,,连接,点M是中点,连接.将以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段的最小值是( )
A.3B.C.D.2
2.(2023·江苏无锡·统考中考真题)如图中,,为中点,若点为直线下方一点,且与相似,则下列结论:①若,与相交于,则点不一定是的重心;②若,则的最大值为;③若,则的长为;④若,则当时,取得最大值.其中正确的为( )
A.①④B.②③C.①②④D.①③④
二、填空题
3.(2023·江苏无锡·统考中考真题)二次函数的图像与x轴交于点、,与轴交于点,过点的直线将分成两部分,这两部分是三角形或梯形,且面积相等,则的值为 .
三、解答题
4.(2023·四川绵阳·统考中考真题)如图,抛物线的图象的顶点坐标是,并且经过点,直线与抛物线交于B,D两点,以为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点,直线m上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆C与x轴相切;
(3)过点B作,垂足为E,再过点D作,垂足为F,求的值.
5.(2023·浙江·统考中考真题)小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,的直径垂直弦AB于点E,且,.
(1)复习回顾:求的长.
(2)探究拓展:如图2,连接,点G是上一动点,连接,延长交的延长线于点F.
①当点G是的中点时,求证:;
②设,,请写出y关于x的函数关系式,并说明理由;
③如图3,连接,当为等腰三角形时,请计算的长.
6.(2023·江苏泰州·统考中考真题)在平面直角坐标系中,点,的位置和函数、的图像如图所示.以为边在x轴上方作正方形,边与函数的图像相交于点E,边与函数、的图像分别相交于点G、H,一次函数的图像经过点E、G,与y轴相交于点P,连接.
(1),,求函数的表达式及的面积;
(2)当a、m在满足的条件下任意变化时,的面积是否变化?请说明理由;
(3)试判断直线与边的交点是否在函数的图像上?并说明理由.
7.(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,的顶点B,C在x轴上,D在y轴上,,的长是方程的两个根().请解答下列问题:
(1)求点B的坐标;
(2)若,直线分别交x轴、y轴、于点E,F,M,且M是的中点,直线交延长线于点N,求的值;
(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由.
8.(2023·湖南·统考中考真题)如图,点A,B,C在上运动,满足,延长至点D,使得,点E是弦上一动点(不与点A,C重合),过点E作弦的垂线,交于点F,交的延长线于点N,交于点M(点M在劣弧上).
(1)是的切线吗?请作出你的判断并给出证明;
(2)记的面积分别为,若,求的值;
(3)若的半径为1,设,,试求y关于x的函数解析式,并写出自变量x的取值范围.
9.(2023·江苏无锡·统考中考真题)如图,四边形是边长为的菱形,,点为的中点,为线段上的动点,现将四边形沿翻折得到四边形.
(1)当时,求四边形的面积;
(2)当点在线段上移动时,设,四边形的面积为,求关于的函数表达式.
10.(2023·湖北鄂州·统考中考真题)如图1,在平面直角坐标系中,直线轴,交y轴的正半轴于点,且,点B是y轴右侧直线l上的一动点,连接.
(1)请直接写出点A的坐标;
(2)如图2,若动点B满足,点C为的中点,点为线段上一动点,连接.在平面内,将沿翻折,点B的对应点为点P,与相交于点Q,当时,求线段的长;
(3)如图3,若动点B满足,为的中位线,将绕点B在平面内逆时针旋转,当点O、E、F三点共线时,求直线EB与x轴交点的坐标;
(4)如图4,平分交于点,于点,交于点,为的一条中线.设,,的周长分别为,,.试探究:在B点的运动过程中,当时,请直接写出点B的坐标.
专题28 动点综合问题(共16道)-中考数学真题分项汇编(全国通用): 这是一份专题28 动点综合问题(共16道)-中考数学真题分项汇编(全国通用),文件包含专题28动点综合问题共16道原卷版docx、专题28动点综合问题共16道解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
专题10 一次函数及其应用(共30道)-中考数学真题分项汇编(全国通用): 这是一份专题10 一次函数及其应用(共30道)-中考数学真题分项汇编(全国通用),文件包含专题10一次函数及其应用共30道原卷版docx、专题10一次函数及其应用共30道解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
专题32 函数与几何综合问题(共25题)--2023年中考数学真题分项汇编(全国通用): 这是一份专题32 函数与几何综合问题(共25题)--2023年中考数学真题分项汇编(全国通用),文件包含函数与几何综合问题共25题解析版pdf、函数与几何综合问题共25题学生版pdf等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。