所属成套资源:北师大版九年级数学全册高分突破必练专题(原卷版+解析)
北师大版九年级数学全册高分突破必练专题专项32二次函数与菱形存在性问题(原卷版+解析)
展开
这是一份北师大版九年级数学全册高分突破必练专题专项32二次函数与菱形存在性问题(原卷版+解析),共31页。试卷主要包含了坐标系中的菱形,解题思路等内容,欢迎下载使用。
菱形的判定:有一组邻边相等的平行四边形是菱形.
2.坐标系中的菱形:
有 3 个等式,故菱形存在性问题点坐标最多可以有 3 个未知量,与矩形相同.
3.解题思路:
(1)思路 1:先等腰,再菱形
在构成菱形的 4 个点中任取 3 个点,必构成等腰三角形,根据等腰存在性方法可先确
定第 3 个点,再确定第 4 个点.
(2)思路 2:先平行,再菱形
设点坐标,根据平行四边形的存在性要求列出“”(AC、BD 为对角线),再结合一组邻
边相等,得到方程组.
方法总结:
菱形有一个非常明显的特点:任意三个顶点所构成的三角形必然是等腰三角形。
【典例2】(10分)直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,与抛物线y=ax2﹣2ax+a+4(a<0)交于点B,如图所示.
(1)求该抛物线的解析式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)若点D在平面内,点C在直线AB上,平面内是否存在点D使得以O,B,C,D为顶点的四边形是菱形.若存在,请直接写出点D的坐标;若不存在,请说明理
【变式2-1】(2020秋•西林县期末)如图,在平面直角坐标系xOy中,A、B、C为坐标轴上的三个点,且OA=1,OB=3,OC=4.
(1)求经过A、B、C三点的抛物线的解析式
(2)在平面直角坐标系xOy中是否存在一点P,使得以A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)若M为该抛物线上的一动点,在(2)的条件下,求|PM﹣AM|的最大值.
【变式2-2】(2021•柳南区校级模拟)综合与探究:
如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【变式2-3】(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
1.(2022春•兴宁区校级期末)如图,抛物线y=x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,连接AC,BC,点P是直线AC下方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)连接AP,CP,设P点的横坐标为m,△ACP的面积为S,求S与m的函数关系式;
(3)试探究:过点P作BC的平行线1,交线段AC于点D,在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标,若不存在,请说明理由.
2.(2021秋•九龙坡区校级月考)如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC,交对称轴于点D.
(1)求抛物线的解析式;
(2)点P是直线BC上方的抛物线上一点,连接PC,PD.求△PCD的面积的最大值以及此时点P的坐标;
(3)将抛物线y=ax2+bx+3向右平移1个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点.当以D、E、F、G四点为顶点的四边形是菱形时,直接写出点F的坐标,并写出求解其中一个点F的坐标的过程.
3.(2021秋•讷河市期中)综合与探究:如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.
(1)求抛物线的解析式.
(2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.
①当△ANC面积最大时的P点坐标为 ;最大面积为 .
②点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.
(1)求抛物线的解析式及点B的坐标.
(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.
(3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.
专项32 二次函数与菱形存在性问题
菱形的判定:有一组邻边相等的平行四边形是菱形.
2.坐标系中的菱形:
有 3 个等式,故菱形存在性问题点坐标最多可以有 3 个未知量,与矩形相同.
3.解题思路:
(1)思路 1:先等腰,再菱形
在构成菱形的 4 个点中任取 3 个点,必构成等腰三角形,根据等腰存在性方法可先确
定第 3 个点,再确定第 4 个点.
(2)思路 2:先平行,再菱形
设点坐标,根据平行四边形的存在性要求列出“”(AC、BD 为对角线),再结合一组邻
边相等,得到方程组.
方法总结:
菱形有一个非常明显的特点:任意三个顶点所构成的三角形必然是等腰三角形。
【典例2】(10分)直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,与抛物线y=ax2﹣2ax+a+4(a<0)交于点B,如图所示.
(1)求该抛物线的解析式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)若点D在平面内,点C在直线AB上,平面内是否存在点D使得以O,B,C,D为顶点的四边形是菱形.若存在,请直接写出点D的坐标;若不存在,请说明理
【答案】(1)y=﹣x2+2x+3;(2)S与m的函数表达式为S=﹣m2+m+,S的最大值是;(3)点D的坐标为(﹣,)或(,﹣)或(,)或(﹣,)
【解答】解:(1)∵直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,
∴A(1,0)、B(0,3);
∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,
∴a+4=3,
∴a=﹣1,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)过点M作MH⊥x轴于点H,如图所示:
设点M(m,﹣m2+2m+3),
则S=S梯形BOHM﹣S△AMH
=(3﹣m2+2m+3)×m﹣(m﹣1)×(﹣m2+2m+3)
=﹣m2+m+,
∵﹣<0,
∴S有最大值,当m=时,S的最大值是.
∴S与m的函数表达式为S=﹣m2+m+,S的最大值是;
(3)设点C的坐标为(m,﹣3m+3),而点B和点O的坐标分别为(0,3)和(0,0),
①当OB是菱形的一条边时,
∵OB=BC=3,或OB=OC=3,
∴9=(m﹣0)2+(﹣3m+3﹣3)2,或m2+(﹣3m+3)2=9,
∴m=±或m=或m=0(舍),
∴点D的坐标为(﹣,)或(,﹣)或(,);
②当OB是菱形的对角线时,CD必在OB的中垂线上,
∴yC=,
∴点C(,),
此时BC2=+==CO2,
此时以O、C、B、D为顶点的四边形是菱形,则点D(﹣,).
综上所述,点D的坐标为(﹣,)或(,﹣)或(,)或(﹣,)
【变式2-1】(2020秋•西林县期末)如图,在平面直角坐标系xOy中,A、B、C为坐标轴上的三个点,且OA=1,OB=3,OC=4.
(1)求经过A、B、C三点的抛物线的解析式
(2)在平面直角坐标系xOy中是否存在一点P,使得以A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)若M为该抛物线上的一动点,在(2)的条件下,求|PM﹣AM|的最大值.
【答案】(1)(2)P(5,3);
(3)|PM﹣AM|的最大值为5.
【解答】解:(1)由题意得:A(1,0),B(0,3),C(﹣4,0),
设抛物线的解析式为y=a(x+4)(x﹣1),
代入点B(0,3),得:﹣4a=3,
解得a=,
∴;
(2)若AP为菱形的对角线,则AB和AC为邻边,
∵AB=,
∴此种情况不能构成菱形,
若BP为菱形的对角线,则AB和BC为邻边,
∵AB=,
∴此种情况不能构成菱形,
若CP为菱形的对角线,则AC和BC为邻边,
∵AC=BC=5,
∴此种情况可以构成菱形,
设P(x,y),由中点坐标公式得:
,
解得:,
∴P(5,3);
(3)当A,P,M不共线时,点A,P,M构成三角形,
∴|PM﹣AM|<AP,
当A,P,M共线时,|PM﹣AM|=AP,
∴|PM﹣AM|的最大值为AP,
∵A(1,0),P(5,3),
∴AP=,
∴|PM﹣AM|的最大值为5.
【变式2-2】(2021•柳南区校级模拟)综合与探究:
如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
【答案】(1)y=x2﹣x﹣6
(2)存在;点N坐标为,,(2,0),.
【解答】解:(1)∵OA=2,OC=6,
∴A(﹣2,0),C(0,﹣6),
将A(﹣2,0),C(0,﹣6),代入y=x2+bx+c,
得,
解得:b=﹣1,c=﹣6,
∴抛物线得解析式为:y=x2﹣x﹣6.
(2)存在;点N坐标为,,(2,0),.
∵A(﹣2,0),C(0,﹣6),
∴AC=.
①若AC为菱形的边长,如图2,
则MN∥AC,且MN=AC=.
N1(),N2(),N3(2,0).
②若AC为菱形的对角线,如图3,
则AN4∥CM4,AN4=CN4,
设N4(﹣2,n),
则﹣n=,
解得:n=.
∴N4(﹣2,).
综上所述,点N坐标为或或(2,0)或.
【变式2-3】(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+2x+3; (2)P(1,2);
(3)Q的坐标为:Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).
【解答】解:(1)∵抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,
∴,
解得:,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)在y=﹣x2+2x+3中,令x=0,得y=3,
∴C(0,3),
∵△PBC的周长为:PB+PC+BC,BC是定值,
∴当PB+PC最小时,△PBC的周长最小.
如图1,点A、B关于对称轴l对称,连接AC交l于点P,则点P为所求的点.
∵AP=BP,
∴△PBC周长的最小值是AC+BC,
∵A(3,0),B(﹣1,0),C(0,3),
∴AC=3,BC=.
∴△PBC周长的最小值是:3+.
抛物线对称轴为直线x=﹣=1,
设直线AC的解析式为y=kx+c,将A(3,0),C(0,3)代入,得:
,
解得:,
∴直线AC的解析式为y=﹣x+3,
∴P(1,2);
(3)存在.
设P(1,t),Q(m,n)
∵A(3,0),C(0,3),
则AC2=32+32=18,
AP2=(1﹣3)2+t2=t2+4,
PC2=12+(t﹣3)2=t2﹣6t+10,
∵四边形ACPQ是菱形,
∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,
①当以AP为对角线时,则CP=CA,如图2,
∴t2﹣6t+10=18,
解得:t=3±,
∴P1(1,3﹣),P2(1,3+),
∵四边形ACPQ是菱形,
∴AP与CQ互相垂直平分,即AP与CQ的中点重合,
当P1(1,3﹣)时,
∴=,=,
解得:m=4,n=﹣,
∴Q1(4,﹣),
当P2(1,3+)时,
∴=,=,
解得:m=4,n=,
∴Q2(4,),
②以AC为对角线时,则PC=AP,如图3,
∴t2﹣6t+10=t2+4,
解得:t=1,
∴P3(1,1),
∵四边形APCQ是菱形,
∴AC与PQ互相垂直平分,即AC与CQ中点重合,
∴=,=,
解得:m=2,n=2,
∴Q3(2,2),
③当以CP为对角线时,则AP=AC,如图4,
∴t2+4=18,
解得:t=±,
∴P4(1,),P5(1,﹣),
∵四边形ACQP是菱形,
∴AQ与CP互相垂直平分,即AQ与CP的中点重合,
∴=,=,
解得:m=﹣2,n=3,
∴Q4(﹣2,3+),Q5(﹣2,3﹣),
综上所述,符合条件的点Q的坐标为:Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).
1.(2022春•兴宁区校级期末)如图,抛物线y=x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,连接AC,BC,点P是直线AC下方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)连接AP,CP,设P点的横坐标为m,△ACP的面积为S,求S与m的函数关系式;
(3)试探究:过点P作BC的平行线1,交线段AC于点D,在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标,若不存在,请说明理由.
【答案】(1)y=x2+2x﹣3;
S=•PM•OA=(﹣m2﹣3m)=﹣m2﹣m(﹣3<m<0);
(3)点E的坐标为(﹣+1,)或(﹣3,﹣4).
【解答】解:(1)将A(﹣3,0),B(1,0)代入y=x2+bx+c得:,
解得:,
∴y=x2+2x﹣3;
(2)如图1,过点P作PM∥y轴交直线AC于点M,
∵A(﹣3,0),C(0,﹣3),
设直线AC的解析式为:y=kx+n,
∴,
∴,
∴AC的解析式为:y=﹣x﹣3,
∵P点的横坐标为m,
∴P的坐标是(m,m2+2m﹣3),则M的坐标是(m,﹣m﹣3),
∴PM=﹣m﹣3﹣(m2+2m﹣3)=﹣m2﹣3m,
∵点P是直线AC下方抛物线上的一个动点,
∴﹣3<m<0,
∴S=•PM•OA=(﹣m2﹣3m)=﹣m2﹣m(﹣3<m<0);
(3)分两种情况:
①如图2,四边形CDEB是菱形,
设D(t,﹣t﹣3),则E(t+1,﹣t),
∵四边形CDEB是菱形,
∴CD=BC,
∴(t﹣0)2+(﹣t﹣3+3)2=12+32,
∴t=±,
∵t<0,
∴t=﹣,
∴E(﹣+1,);
②如图3,四边形CBDE是菱形,
设D(t,﹣t﹣3),则E(t﹣1,﹣t﹣6),
∵四边形CBDE是菱形,
∴CE=BC,
∴(t﹣1﹣0)2+(﹣t﹣6+3)2=12+32,
∴t=0(舍)或﹣2,
∴E(﹣3,﹣4);
综上所述,点E的坐标为(﹣+1,)或(﹣3,﹣4).
2.(2021秋•九龙坡区校级月考)如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC,交对称轴于点D.
(1)求抛物线的解析式;
(2)点P是直线BC上方的抛物线上一点,连接PC,PD.求△PCD的面积的最大值以及此时点P的坐标;
(3)将抛物线y=ax2+bx+3向右平移1个单位得到新抛物线,新抛物线与原抛物线交于点E,点F是新抛物线的对称轴上的一点,点G是坐标平面内一点.当以D、E、F、G四点为顶点的四边形是菱形时,直接写出点F的坐标,并写出求解其中一个点F的坐标的过程.
【答案】(1) y=﹣x2+2x+3; (2)P(,);
(3)F点坐标为(2,)或(2,2+)或(2,2﹣)或(2,2).
【解答】解:(1)将点A(﹣1,0)和点B(3,0)代入y=ax2+bx+3,
得,
解得,
∴y=﹣x2+2x+3;
(2)令x=0,则y=3,
∴C(0,3),
设直线BC的解析式为y=kx+b,
∴,
∴,
∴y=﹣x+3,
∵函数的对称轴为直线x=1,
∴D(1,2),
过点P作x轴的垂线,交BC于点Q,
设P(t,﹣t2+2t+3),则Q(t,﹣t+3),
∴PQ=﹣t2+3t,
∴S△PCD=×1×(﹣t2+3t)=﹣(t﹣)2+,
∴当t=时,S△PCD的最大值为,
此时P(,);
(3)y=﹣x2+2x+3=﹣(x﹣1)2+4向右平移1个单位得到新抛物线为y=﹣(x﹣2)2+4,
联立,
解得x=,
∴E(,),
∵新抛物线的对称轴为直线x=2,
设F(2,m),
∴DE2=+=,DF2=1+(m﹣2)2,EF2=+(m﹣)2,
∵以D、E、F、G四点为顶点的四边形是菱形时,有三种情况:
①当EF、FD为邻边,此时EF=FD,
∴1+(m﹣2)2=+(m﹣)2,
解得m=,
∴F(2,);
②当ED、EF为邻边,此时ED=EF,
∴=+(m﹣)2,
解得m=或m=2,
∴F(2,2)或F(2,),
设直线ED的解析式为y=kx+b,
∴,
∴,
∴y=x﹣,
当x=2时,y=,
∴F(2,2);
③当DE、DF为邻边,此时DE=DF,
∴=1+(m﹣2)2,
解得m=2+或m=2﹣,
∴F(2,2+)或F(2,2﹣);
综上所述:F点坐标为(2,)或(2,2+)或(2,2﹣)或(2,2).
3.(2021秋•讷河市期中)综合与探究:如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.
(1)求抛物线的解析式.
(2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.
①当△ANC面积最大时的P点坐标为 ;最大面积为 .
②点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
【答案】(1) y=﹣x2﹣3x+4 (2)① (﹣2,2);8.
②点D的坐标为(,)或(﹣4,5)或(,)或(,).
【解答】解:(1)将A(﹣4,0)代入y=x+c,
得c=4,
将A(﹣4,0)和c=4代入y=﹣x2+bx+c,
得﹣16﹣4b+4=0,
解得b=﹣3,
∴抛物线的解析式为y=﹣x2﹣3x+4.
(2)①如图2,设点M的坐标为(x,0)(﹣4<x<0),则P(x,x+4),N(x,﹣x2﹣3x+4),
∴PN=﹣x2﹣3x+4﹣(x+4)=﹣x2﹣4x,
∴S△ANC=PN•AM+PN•OM=PN•OA=×4(﹣x2﹣4x)=﹣2(x+2)2+8,
∴当x=﹣2时,S△ANC最大=8,此时P(﹣2,2),
故答案为:(﹣2,2);8.
②存在,
如图3,菱形BDCF以BC为对角线,连接BC、DF交于点I,DF交y轴于点R,
当y=0时,由﹣x2﹣3x+4=0得x1=﹣4,x2=1,
∴B(1,0),
∴CB==,
∵DF与BC互相垂直平分,
∴I为BC的中点,
∴I(,2),CI=CB=,
∵∠CIR=∠COB=90°,∠RCI=∠BCO,
∴△ICR∽△OCB,
∴=,
∴CR===,
∴OR=4﹣=,
∴R(0,),
设直线DF的解析式为y=kx+,则k+=2,
解得k=,
∴直线DF的解析式为y=x+,
由得,
∴F(,),
∵点D与点F(,)关于点I(,2)对称,
∴D(,);
如图4,菱形BCDF以CF为对角线,连接BD交CF于点J,连接AD,
∵BD与CF互相垂直平分,
∴∠AJB=∠AJD=90°,JB=JD,
∵OA=OC,∠AOC=90°,
∴∠OAC=∠OCA=45°,
∴∠JAB=∠JBA=45°,
∴JB=JA,
∴JD=JA,
∴∠JAD=∠JDA=45°,
∴∠DAB=90°,∠ADB=∠ABD=45°,
∴AD=AB=1+4=5,
∴D(﹣4,5);
如图5,菱形BCFD以CF、CB为邻边,且点D在BC的左侧,设DF交x轴于点T,
∴CF=CB=,
作FL⊥y轴于点L,作DK⊥FL于点K,交x轴于点Q,则∠CLF=90°,
∴∠LFC=∠LCF=45°,
∴LC=LF,
∴LF2+LC2=2LF2=2LC2=CF2=()2=17,
∴LF=LC=,
∵FL∥OA,DF∥BC,
∴∠DFK=∠ATF=∠CBO,
∵∠DKF=∠COB=90°,DF=CB,
∴△DKF≌△COB(AAS),
∴KF=OB=1,KD=OC,
∵QK=OL,
∴QD=LC=,LK=﹣1=,
∴D(,);
如图6,菱形BCFD以CF、CB为邻边,且点D在BC的右侧,
作FL⊥y轴于点L,作DV⊥y轴于点V,作FK⊥DV于点K,则∠CLF=90°,
∵∠LCF=∠OCA=45°,
∴∠LCF=∠LFC=45°,
∴LF=LC,
∵CF=CB=,
∴LF2+LC2=2LF2=2LC2=CF2=()2=17,
∴LF=LC=,
∵FK∥OC,FD∥CB,
∴∠DFC=∠BCA,∠KFC=∠OCA,
∴∠DFK=∠BCO,
∵DF=BC,
∴△DFK≌△BCO(AAS),
∴FK=CO=4,KD=OB=1,
∴DV=1+=,OV=4+﹣4=,
∴D(,),
综上所述,点D的坐标为(,)或(﹣4,5)或(,)或(,).
4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.
(1)求抛物线的解析式及点B的坐标.
(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.
(3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.
【解答】解:(1)由题意得,
,
∴,
∴y=x2+2x﹣3,
当y=0时,x2+2x﹣3=0,
∴x1=1,x2=﹣3,
∴B(﹣3,0);
(2)设直线BC的解析式为:y=kx+b,
∴,
∴,
∴y=﹣x﹣3,
设点P(m,﹣m﹣3),Q(m,m2+2m﹣3),
∴PQ=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,
∴当m=﹣时,PQ最大=;
(3)如图1,
∵B(﹣3,0),C(0,﹣3),
∴OB=OC=3,
∴∠OCB=∠OBC=45°,
作PD⊥y轴于D,
∴CD=PD=PC•sin∠OCB==t,
当BM=PM时,
∴∠MPB=∠OBC=45°,
∵∠PMO=∠PDO=∠MOD=90°,
∴四边形OMPD是矩形,
∴OM=PD=t,
由BM+OM=OB得,
∴2t=3,
∴t=,
∴P(﹣,﹣),
∴N(﹣3,﹣),
如图2,
当PM=PB时,作PD⊥y轴于D,作PE⊥x轴于E,
∴BM=2BE,
可得四边形PDOE是矩形,
∴OE=PD=t,
∴BE=3﹣t,
∴t=2(3﹣t),
∴t=2,
∴P(﹣2,﹣1),
∴N(﹣2,1),
如图3,
当PB=MB时,
3﹣=t,
∴t=6﹣3,
∴P(3,3﹣3),
∴N(0,3﹣3),
综上所述:N(﹣3,﹣)或(﹣2,1)或(0,3﹣3).
相关试卷
这是一份北师大版九年级数学全册高分突破必练专题专项45四点共圆(原卷版+解析),共40页。试卷主要包含了四点共圆,5FC等内容,欢迎下载使用。
这是一份北师大版九年级数学全册高分突破必练专题专项43定弦定角(原卷版+解析),共33页。
这是一份北师大版九年级数学全册高分突破必练专题专项40辅助圆定点定长(原卷版+解析),共34页。