所属成套资源:北师大版九年级数学全册高分突破必练专题(原卷版+解析)
北师大版九年级数学全册高分突破必练专题专项33二次函数与胡不归综合应用(原卷版+解析)
展开
这是一份北师大版九年级数学全册高分突破必练专题专项33二次函数与胡不归综合应用(原卷版+解析),共32页。
【背景】从前,有一个小伙子在外地当学徒,当他获悉在家乡的年老父亲病危的消息后,便立即启程日夜赶路。由于思念心切,他选择了全是沙砾地带的直线路径A--B(如图1所示:A是出发地,B是目的地,AC是一条驿道,而驿道靠目的地的一侧全是沙砾地带),当他气喘吁吁地赶到父亲眼前时,老人刚刚咽了气,小伙子不觉失声痛哭,邻舍劝慰小伙子时告诉说,老人在弥留之际还不断喃喃地叨念:胡不归胡不归这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢倘有可能,他应该选择条怎样的路线呢这就是风靡千年的“胡不归问题”.
由于在驿道和沙砾地的行走速度不一样,那么,小伙子有没有可能先在驿道上走一程后,再走沙砾地,虽然多走了路,但反而总用时更短呢如果存在这种可能,那么要在驿道上行走多远才最省时
设在沙砾地行驶速度为,在驿道行驶速度为,显然<.
不妨假设从C处进入砂砾地.设总共用时为t,则t=+=(BC+AC).因为,是确定的,所以只要(BC+AC)最小,用时就最少.问题就转化为求(BC+AC)的最小值.
我们可以作出一条以C为端点的线段,使其等于AC.并且与线段CB位于AM的两侧,然后,根据两点之间线段最短,不难找到最小值点.怎么作呢由三角函数的定义,过A点,在AM的另一侧以A为顶点,以AM为一边作∠MAN=∠α,sinα=.然后,作CE⊥AN,则CE=AC.最后,当点B、C、E在一条直线上时,BC+CE最小,即(BC+AC)的值最小,即用时最小
胡不归问题
识别条件:动点P的运动轨迹是直线(或线段)
方法:
1、将所求线段和改为的形式()
2、作,使
3、过点B作交AC于点P
4、的最小值转化为垂线段的长
注意:当k>1时,
【典例1】如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D
(1)求二次函数的表达式及其顶点坐标;
(2)若P为y轴上的一个动点,连接PD,则PB+PD的最小值为 ;
【典例2】如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A在B左边),与y轴交于点C.连接AC,BC.且△ABC的面积为8.
(1)求m的值;
(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使∠ATC=60°.求(t﹣1)2的值.
(3)如图2,点P为y轴上一个动点,连接AP,求CP+AP的最小值,并求出此时点P的坐标.
【变式1】如图,已知抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.若点Q为线段OC上的动点,求AQ+CQ的最小值.
【变式2】如图,在平面直角坐标系中,直线y=﹣x+4的图象分别与y轴和x轴交于点A和点B.若定点P的坐标为(0,6),点Q是y轴上任意一点,则PQ+QB的最小值为 .
【变式3】二次函数y=ax2﹣2x+c的图象与x轴交于A、C两点,点C(3,0),与y轴交于点B(0,﹣3).
(1)a= ,c= ;
(2)如图1,P是x轴上一动点,点D(0,1)在y轴上,连接PD,求PD+PC的最小值;
1如图,在平面直角坐标系中,抛物线y=﹣x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则2OP+AP的最小值为 .
2.如图,已知抛物线y=ax2+bx+c(a≠0)与y轴相交于点C(0,﹣2),与x轴分别交于点B(3,0)和点A,且tan∠CAO=1.
(1)求抛物线解析式.
(2)抛物线上是否存在一点Q,使得∠BAQ=∠ABC,若存在,请求出点Q坐标,若不存在,请说明理由;
(3)抛物线的对称轴交x轴于点D,在y轴上是否存在一个点P,使PC+PD值最小,若存在,请求出最小值,若不存在,请说明理由.
3.如图,已知抛物线y=ax2﹣2ax﹣8a(a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.
(1)求抛物线的函数表达式;
(2)若点P(x,y)在该二次函数的图象上,且S△BCD=S△ABP,求点P的坐标;
(3)设F为线段BD上的一个动点(异于点B和D),连接AF.是否存在点F,使得2AF+DF的值最小?若存在,分别求出2AF+DF的最小值和点F的坐标,若不存在,请说明理由.
4.如图,抛物线y=﹣x2﹣6x+7交x轴于A,B两点(点A在点B左侧),交y轴于点C,直线y=x+7经过点A、C,点M是线段AC上的一动点(不与点A,C重合).
(1)求A,B两点的坐标;
(2)当点P,C关于抛物线的对称轴对称时,求PM+AM的最小值及此时点M的坐标;
5.已知:如图所示,抛物线y=﹣x2﹣x+c与x轴交于A、B两点,与y轴的正半轴交于点C,点A在点B的左侧,且满足tan∠CAB•tan∠CBA=1.
(1)求A、B两点的坐标;
(2)若点P是抛物线y=﹣x2﹣x+c上一点,且△PAC的内切圆的圆心正好落在x轴上,求点P的坐标;
(3)若M为线段AO上任意一点,求MC+AM的最小值.
6.已知抛物线y=ax2﹣4ax﹣12a与x轴相交于A,B两点,与y轴交于C点,且OC=OA.设抛物线的顶点为M,对称轴交x轴于点N.
(1)求抛物线的解析式;
(2)如图1,点E(m,n)为抛物线上的一点,且0<m<6,连接AE,交对称轴于点P.点F为线段BC上一动点,连接EF,当PA=2PE时,求EF+BF的最小值.
专项33 二次函数与胡不归综合应用
【背景】从前,有一个小伙子在外地当学徒,当他获悉在家乡的年老父亲病危的消息后,便立即启程日夜赶路。由于思念心切,他选择了全是沙砾地带的直线路径A--B(如图1所示:A是出发地,B是目的地,AC是一条驿道,而驿道靠目的地的一侧全是沙砾地带),当他气喘吁吁地赶到父亲眼前时,老人刚刚咽了气,小伙子不觉失声痛哭,邻舍劝慰小伙子时告诉说,老人在弥留之际还不断喃喃地叨念:胡不归胡不归这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢倘有可能,他应该选择条怎样的路线呢这就是风靡千年的“胡不归问题”.
由于在驿道和沙砾地的行走速度不一样,那么,小伙子有没有可能先在驿道上走一程后,再走沙砾地,虽然多走了路,但反而总用时更短呢如果存在这种可能,那么要在驿道上行走多远才最省时
设在沙砾地行驶速度为,在驿道行驶速度为,显然<.
不妨假设从C处进入砂砾地.设总共用时为t,则t=+=(BC+AC).因为,是确定的,所以只要(BC+AC)最小,用时就最少.问题就转化为求(BC+AC)的最小值.
我们可以作出一条以C为端点的线段,使其等于AC.并且与线段CB位于AM的两侧,然后,根据两点之间线段最短,不难找到最小值点.怎么作呢由三角函数的定义,过A点,在AM的另一侧以A为顶点,以AM为一边作∠MAN=∠α,sinα=.然后,作CE⊥AN,则CE=AC.最后,当点B、C、E在一条直线上时,BC+CE最小,即(BC+AC)的值最小,即用时最小
胡不归问题
识别条件:动点P的运动轨迹是直线(或线段)
方法:
1、将所求线段和改为的形式()
2、作,使
3、过点B作交AC于点P
4、的最小值转化为垂线段的长
注意:当k>1时,
【典例1】如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(0,﹣),C(2,0),其对称轴与x轴交于点D
(1)求二次函数的表达式及其顶点坐标;
(2)若P为y轴上的一个动点,连接PD,则PB+PD的最小值为 ;
【解答】解:(1)由题意解得,
∴抛物线解析式为y=x2﹣x﹣,
∵y=x2﹣x﹣=(x﹣)2﹣,
∴顶点坐标(,﹣).
(2)如图1中,连接AB,作DH⊥AB于H,交OB于P,
此时PB+PD最小.
理由:∵OA=1,OB=,
∴tan∠ABO==,
∴∠ABO=30°,
∴PH=PB,
∴PB+PD=PH+PD=DH,
∴此时PB+PD最短(垂线段最短).
在Rt△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,
∴sin60°=,
∴DH=,
∴PB+PD的最小值为.
故答案为.
【典例2】如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A,B两点(A在B左边),与y轴交于点C.连接AC,BC.且△ABC的面积为8.
(1)求m的值;
(2)在(1)的条件下,在第一象限内抛物线上有一点T,T的横坐标为t,使∠ATC=60°.求(t﹣1)2的值.
(3)如图2,点P为y轴上一个动点,连接AP,求CP+AP的最小值,并求出此时点P的坐标.
【解答】解:(1)y=x2+(m﹣2)x一2m=(x﹣2)(x+m),
令y=0,则x=2或x=﹣m,
∵m>0,
∴﹣m<0,
∴A(﹣m,0),B(2,0),
∴AB=2+m,
令x=0,则y=﹣2m,
∴C(0,﹣2m),
∵△ABC的面积为8,
∴×(2+m)×(2m)=8,
解得m=2或m=﹣4(舍);
(2)当m=2时,y=x2﹣4,
∵的横坐标为t,
∴T(t,t2﹣4),
过点C作EF∥x轴,过点T作TF⊥EF交于F点,过点C作CD⊥CT交直线AT于点D,过点D作DE⊥EF交于E点,
∵∠DCT=90°,
∴∠DCE+∠TCF=90°,
∵∠DCE+∠CDE=90°,
∴∠TCF=∠CDE,
∴△CED∽△TFC,
∴==,
∵∠ATC=60°,
∴=,
∵C(0,﹣4),
∴CF=t,TF=t2,
∴DE=t,CE=t2,
∴D(﹣t2,t﹣4),
设直线AT的解析式为y=kx+b,
∴,
解得,
∴y=(t﹣2)x+2t﹣4,
∴t﹣4=(t﹣2)(﹣t2)+2t﹣4,
∴(t﹣1)2=;
(3)过点B作BG⊥AC交于G点,交y轴于点P,
∵A、B关于y轴对称,
∴AP=BP,
∵∠GBA+∠BAC=∠ACO+∠CAO=90°,
∴∠ABG=∠ACO,
∵AO=2,CO=4,
∴AC=2,
∴sin∠ACO=,
∴=,
∴CP=GP,
∵CP+AP=(CP+AP)=(GP+AP)≥BG,
∵cs∠ACO===,
∴BG=,
∴CP+AP的最小值为8,
∵tan∠ACO===,
∴OP=1,
∴P(0,﹣1).
【变式1】如图,已知抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.若点Q为线段OC上的动点,求AQ+CQ的最小值.
【解答】解:在第二象限内作∠OCD=30°,CD与y轴交于点D,过点Q作QP⊥CD于点P,连接AP,则∠ODC=60°,
令x=0,得y=x2﹣4x+3=3,
∴C(0,3),
令y=0,得y=x2﹣4x+3=0,
解得x=1或3,
∴A(1,0),B(3,0),
∴OA=1,OC=3,
∴OD=OC•tan30°=,
∴AD=+1,
∵∠OCD=30°,
∴PQ=,
∴AQ+CQ=AQ+PQ≥AP,
当A、Q、P三点依次在同一直线上,且AP⊥CD时,
AQ+CQ=AQ+PQ=AP的值最小,
此时AP=AD•sin60°=,
∴AQ+CQ的最小值为.
【变式2】如图,在平面直角坐标系中,直线y=﹣x+4的图象分别与y轴和x轴交于点A和点B.若定点P的坐标为(0,6),点Q是y轴上任意一点,则PQ+QB的最小值为 .
【解答】解:过点P作直线PD与y轴的夹角∠OPD=30°,作B点关于y轴的对称点B',过B'点作B'E⊥PD交于点E、交y轴于点Q,
∵B'E⊥PD,∠OPE=30°,
∴QE=PQ,
∵BQ=B'Q,
∴PQ+QB=QE+B'Q=B'E,此时PQ+QB取最小值,
∵∠OPD=30°,∠POD=90°,
∴PD=2OD,∠ODP=60°,
∵P的坐标为(0,6),
∴PO=6,
∴OD2+(6)2=(2OD)2,
∴OD=6,
∵直线y=﹣x+4的图象分别与y轴和x轴交于点A和点B,
∴A(0,4),B(4,0),
∴OB=4,
∴OB'=4,
∴B'D=10,
∵B'E⊥PD,∠ODP=60°,
∴∠EB'D=30°,
∴DE=B'D=5,
∴B'E===5,
∴PQ+QB取最小值为5,
故答案为:5.
【变式3】二次函数y=ax2﹣2x+c的图象与x轴交于A、C两点,点C(3,0),与y轴交于点B(0,﹣3).
(1)a= ,c= ;
(2)如图1,P是x轴上一动点,点D(0,1)在y轴上,连接PD,求PD+PC的最小值;
【解答】解:(1)把C(3,0),B(0,﹣3)代入y=ax2﹣2x+c
得到,,解得.
故答案为1,﹣3.
(2)如图1中,作PH⊥BC于H.
∵OB=OC=3,∠BOC=90°,
∴∠PCH=45°,
在Rt△PCH中,PH=PC.
∵DP+PC=(PD+PC)=(PD+PH),
根据垂线段最短可知,当D、P、H共线时DP+PC最小,最小值为DH′,
在Rt△DH′B中,∵BD=4,∠DBH′=45°,
∴DH′=BD=2,
∴DP+PC的最小值为•2=4.
1如图,在平面直角坐标系中,抛物线y=﹣x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则2OP+AP的最小值为 .
【答案】6
【解答】解:连接AO、AB,PB,作PH⊥OA于H,BC⊥AO于C,如图,
∵y=0时,﹣x2+2x=0,解得x1=0,x2=2,
∴B的坐标为(2,0),
∵y=﹣x2+2x=﹣(x﹣)2+3,
∴A的坐标为(,3),
∴OA==2,
而AB=AO=2,
∴AB=AO=OB,
∴△AOB为等边三角形,
∴∠OAP=30°,
∴PH=AP,
∵AP垂直平分OB,
∴PO=PB,
∴OP+AP=PB+PH,
当H、P、B共线时,PB+PH的值最小,最小值为BC的长,
而BC=AB=3,
∴2OP+AP=2(OP+AP)的最小值为6.
故答案为:6.
2.如图,已知抛物线y=ax2+bx+c(a≠0)与y轴相交于点C(0,﹣2),与x轴分别交于点B(3,0)和点A,且tan∠CAO=1.
(1)求抛物线解析式.
(2)抛物线上是否存在一点Q,使得∠BAQ=∠ABC,若存在,请求出点Q坐标,若不存在,请说明理由;
(3)抛物线的对称轴交x轴于点D,在y轴上是否存在一个点P,使PC+PD值最小,若存在,请求出最小值,若不存在,请说明理由.
【解答】解:(1)∵C(0,﹣2),
∴OC=2,
∵tan∠CAO=1,
∴=1,
∴OA=2,A(﹣2,0),
将A(﹣2,0),B(3,0),C(0,﹣2)代入y=ax2+bx+c得:
,解得,
∴抛物线解析式为y=x2﹣x﹣2;
(2)存在一点Q,使得∠BAQ=∠ABC,理由如下:
过A作AM∥BC交y轴于M,交抛物线于Q,作M关于x轴的对称点M',作直线AM'交抛物线于Q',如图:
∵AM∥BC,
∴∠QAB=∠ABC,即Q是满足题意的点,
∵B(3,0),C(0,﹣2),
∴直线BC解析式是y=x﹣2,
设直线AM解析式为y=x+m,将A(﹣2,0)代入得﹣+m=0,
∴m=,
∴直线AM解析式为y=x+,M(0,),
解得(与A重合,舍去)或,
∴Q(5,),
∵M、M'关于x轴对称,
∴∠Q'AB=∠QAB=∠ABC,M'(0,﹣),
∴Q'是满足题意的点,
设直线AQ'为y=kx﹣,将A(﹣2,0)代入得﹣2k﹣=0,
∴k=﹣,
∴直线AQ'为y=﹣x﹣,
解得(舍去)或,
∴Q(1,﹣2);
综上所述,点Q坐标是(5,)或(1,﹣2);
(3)在y轴上存在一个点P,使PC+PD值最小,理由如下:
过P作PH⊥AC于H,过D作DH'⊥AC于H',交y轴于P',如图:
∵y=x2﹣x﹣2=(x﹣)2﹣,
∴抛物线对称轴是直线x=,
∴D(,0),
∵OA=OC=2,
∴△AOC是等腰直角三角形,
∴∠OCA=45°=∠OAC,
∴△PCH是等腰直角三角形,
∴PH=PC,
∴PC+PD最小即是PH+PD最小,
∴当P运动到P',H和H'重合时,PC+PD的最小,最小值是DH',
∵∠OAC=45°,DH'⊥AC,
∴△ADH'是等腰直角三角形,
∴DH'=AD,
∵A(﹣2,0),D(,0),
∴AD=,
∴DH'=,即PC+PD的最小值是.
3.如图,已知抛物线y=ax2﹣2ax﹣8a(a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.
(1)求抛物线的函数表达式;
(2)若点P(x,y)在该二次函数的图象上,且S△BCD=S△ABP,求点P的坐标;
(3)设F为线段BD上的一个动点(异于点B和D),连接AF.是否存在点F,使得2AF+DF的值最小?若存在,分别求出2AF+DF的最小值和点F的坐标,若不存在,请说明理由.
【解答】解:把x=﹣5代入y=﹣x+,
解得y=3,
∴D(﹣5,3),
把D(﹣5,3)代入y=ax2﹣2ax﹣8a,
解得a=,
∴抛物线的解析式为;
(2)设直线BD与y轴交于点E,
∴E(0,),
由可得A(﹣2,0),B(4,0),C(0,),
由S△BCD=S△ABP,
∴CE•|xB﹣xD|=AB•|yP|,
∴(﹣)×(4+5)=(4+2)×|yP|,
∴|yP|=,
∴yP=±,
∵抛物线的顶点为(1,﹣),
∴yP=,
∴P点坐标为或;
(3)存在点F,使得2AF+DF的值最小,理由如下:
过点D作DM平行于x轴,故∠BDM=30°,过F作FH⊥DM于H,
∴sin30°==,
∴HF=DF,
∴2AF+DF=2(AF+DF)=2(AF+HF)=2AH,
当A、F、H三点共线时,即AH⊥DM时,2AF+DF取最小值,
∵A(﹣2,0),
∴F(﹣2,2),
∵D(﹣5,3),
∴AH=3,
∴2AF+DF的最小值为6.
4.如图,抛物线y=﹣x2﹣6x+7交x轴于A,B两点(点A在点B左侧),交y轴于点C,直线y=x+7经过点A、C,点M是线段AC上的一动点(不与点A,C重合).
(1)求A,B两点的坐标;
(2)当点P,C关于抛物线的对称轴对称时,求PM+AM的最小值及此时点M的坐标;
【解答】解:(1)在y=﹣x2﹣6x+7中,令y=0得:
﹣x2﹣6x+7=0,解得x=﹣7或x=1,
∴A(﹣7,0),B(1,0);
(2)过P作PN⊥x轴于N,交AC于M,如图:
抛物线y=﹣x2﹣6x+7的对称轴为直线x=﹣=﹣3,
在y=﹣x2﹣6x+7中,令x=0得y=7,
∴C(0,7),
∴AC==7,
∴sin∠CAB===,
在Rt△AMN中,MN=AM•sin∠CAB=AM,
∴PM+AM最小,即是PM+MN最小,由垂线段最短可知PM+AM的最小值即为PN的长,
∵点P,C(0,7)关于抛物线的对称轴直线x=﹣3对称,
∴PN与OC关于抛物线y=﹣x2﹣6x+7的对称轴直线x=﹣3对称,P(﹣6,7),
∴PN=OC=7,即PM+AM的最小值为7,
由A(﹣7,0),C(0,7)得直线AC解析式为y=x+7,
在y=x+7中,令x=﹣6得y=,
∴M(﹣6,);
5.已知:如图所示,抛物线y=﹣x2﹣x+c与x轴交于A、B两点,与y轴的正半轴交于点C,点A在点B的左侧,且满足tan∠CAB•tan∠CBA=1.
(1)求A、B两点的坐标;
(2)若点P是抛物线y=﹣x2﹣x+c上一点,且△PAC的内切圆的圆心正好落在x轴上,求点P的坐标;
(3)若M为线段AO上任意一点,求MC+AM的最小值.
【解答】解:(1)设点A、B的横坐标分别为x1,x2,
令y=0可得﹣x2﹣x+c=0,
∴x1•x2=﹣2c,
∵tan∠CAB•tan∠CBA=1,即=1,
∴OC2=OA•OB=(﹣x1)•x2=2C,
即c2=2c,
解得c1=0(舍去),c2=2,
∴抛物线y=﹣x2﹣x+2,
令y=0解得,x1=﹣4,x2=1,
故点A(﹣4,0),点B(1,0);
(2)△PAC的内切圆圆心正好落在x轴上,则x轴为∠CAP的角平分线,
作点C关于x轴的对称点C'(0,﹣2),
设直线AC'的解析式为y=kx+b,将点A(﹣4,0),C'(0,﹣2)代入,
得,
解得,
∴直线AC'的解析式为y=x﹣2,
联立抛物线与直线得,
解得,,
故点P坐标(2,﹣3);
(3)过点A作直线AD,使sin∠OAD=,过点M作ME⊥AD于点E,如图,
在Rt△MAE中,sin∠OAD=,
∴ME=AM,
∴MC+AM=MC+ME,当点M、C、E三点共线时,MC+ME最小为CE,
∵∠OMC=∠EMA.∠MEA=∠COM,
∴∠EAM=∠OCM,
在Rt△OCM中,sin∠OCM=sin∠OAD=,OC=2,
∴tan∠OCM===,cs∠OAD==,
∴OM=1,CM=,
∴AM=4﹣1=3,
在Rt△AEM中,sin∠OAD=,AM=3,
∴EM=3•sin∠OAD=,
∴MC+ME=+=.
故MC+AM的最小值.
6.已知抛物线y=ax2﹣4ax﹣12a与x轴相交于A,B两点,与y轴交于C点,且OC=OA.设抛物线的顶点为M,对称轴交x轴于点N.
(1)求抛物线的解析式;
(2)如图1,点E(m,n)为抛物线上的一点,且0<m<6,连接AE,交对称轴于点P.点F为线段BC上一动点,连接EF,当PA=2PE时,求EF+BF的最小值.
【解答】解:(1)在y=ax2﹣4ax﹣12a中,令y=0得ax2﹣4ax﹣12a=0,
解得x1=﹣2,x2=6,
∴OA=2,
∵OC=OA,
∴OC=3,即C(0,3),
将C(0,3)代入y=ax2﹣4ax﹣12a得a=﹣,
∴抛物线的解析式为y=﹣x2+x+3;
(2)过E作EH⊥x轴于H,交BC于F',过F作FQ⊥x轴于Q,如图:
∵y=﹣x2+x+3对称轴为直线x=2,
∴P横坐标为2,即ON=2,
∴AN=2﹣(﹣2)=4,
∵AP=2PE,
∴AN=2NH,
∴NH=2,
∴E横坐标为4,在y=﹣x2+x+3中令x=4得y=3,
∴E(4,3),
由(1)可知:OC=3,OB=6,
Rt△BOC中,BC==3,
∴sin∠CBO===,
∵EH⊥x轴,
∴Rt△BFQ中,sin∠CBO==,
∴FQ=BF,
而EF+BF=(EF+BF),
∴EF+BF最小即是EF+BF最小,也是EF+FQ最小,此时E、F、Q共线,即F与F'重合,Q与H重合,EH的长度即是EF+BF的最小值,
∵EH=|yE|=3,
∴EF+BF的最小值为3,
∴EF+BF的最小值为;
相关试卷
这是一份北师大版九年级数学全册高分突破必练专题专项45四点共圆(原卷版+解析),共40页。试卷主要包含了四点共圆,5FC等内容,欢迎下载使用。
这是一份北师大版九年级数学全册高分突破必练专题专项43定弦定角(原卷版+解析),共33页。
这是一份北师大版九年级数学全册高分突破必练专题专项37切线的判定与性质的综合应用(原卷版+解析),共44页。