所属成套资源:北师大版九年级数学全册高分突破必练专题(原卷版+解析)
北师大版九年级数学全册高分突破必练专题专项36切线的证明方法归类(2大类型+5种方法)(原卷版+解析)
展开
这是一份北师大版九年级数学全册高分突破必练专题专项36切线的证明方法归类(2大类型+5种方法)(原卷版+解析),共28页。
证明一条直线是圆的切线的方法及辅助线的作法
(1)连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”
(2)作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”
【考点1 有公共点:连半径,证垂直】
方法1:特殊角计算法证垂直
【典例1】(2022•思明区校级一模)如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.
【变式1-1】(2021•广东二模)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,连接BD,∠DAB=∠B=30°,求证:直线BD是⊙O的切线.
【变式1-2】(2021秋•潍坊期末)如图,A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,CD=2,E是CD延长线上的一点,且AE=AC.
(1)求证:AE是⊙O的切线;
(2)求ED的长.
方法2:等角代换法证垂直
【典例2】(2020秋•福州期末)如图,AB是⊙O的直径,C为半圆O上一点,直线l经过点C,过点A作AD⊥l于点D,连接AC,当AC平分∠DAB时,求证:直线l是⊙O的切线.
【变式2-1】(2017秋•荆州区期末)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求⊙O的半径.
【变式2-2】(2021秋•灌南县期末)已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED与AB的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若∠F=30°,BF=2,求△ABC外接圆的半径.
方法3:平行线性质法证垂直
【典例3】(2021秋•吉林期末)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.求证:PD是⊙O的切线;
【变式3-1】(2022•大兴区二模)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线;
【变式3-2】(2021•崆峒区一模)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC.
求证:DE是⊙O的切线.
【变式3-3】(2022•百色一模)如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连结DB,过点D作DE⊥BC,垂足为点E.求证:DE是⊙O的切线;
方法4: 全等三角形法证垂直
【典例4】(2022•东明县一模)已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O与BC相交于点E,在AC上取一点D,使得DE=AD,求证:DE是⊙O的切线.
【变式4-1】(2021秋•虎林市校级期末)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点D,若E是AC的中点,连接DE.求证:DE为⊙O的切线.
【考点2 无公共点:做垂直,证半径】
方法5 :角平分线的性质法证半径
【典例5】(2020•八步区一模)如图,在Rt△ABC中,∠BAC的角平分线交BC于点D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D,AB=5,BE=3.
求证:AC是⊙D的切线;
【变式5-1】(2018•天河区校级一模)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E
求证:BC是⊙D的切线;
方法6 : 全等三角形法证半径
【典例6】如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径作圆,与BC相切于点C,过点A作AD⊥BO交BO的延长线于点D,且∠AOD=∠BAD.
(1)求证:AB为⊙O的切线;
(2)若AB=10,sin∠ABC=,求⊙O的半径.
【变式6】(2020秋•开福区月考)如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.求证:BF是⊙O的切线;
1.(2022秋•利通区期末)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E,求证:AC是⊙D的切线.
2.(2019秋•黄冈期末)如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
(1)求证:点D是BC的中点:
(2)求证:DE是⊙O切线.
3.(2022秋•宽城区校级期末)如图,BD是⊙O的直径,A是BD延长线上的一点,点E在⊙O上,BC⊥AE,交AE的延长线于点C,BC交⊙O于点F,且点E是的中点.
求证:AC是⊙O的切线.
4.(2022秋•天河区校级期末)如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.
5.(2021秋•新疆期末)如图,在Rt△ABC中,∠BAC=90°以AB为直径的⊙O与BC相交于点E.在AC上取一点D,使得DE=AD.
求证:DE是⊙O的切线.
6.(2022秋•长乐区期中)如图,在△OAB中,OA=OB=5,AB=8,⊙O的半径为3.
求证:AB是⊙O的切线.
7.(2020秋•厦门期末)如图,在△ABC中,AB=AC,以AB为直径作⊙O,过点O作OD∥BC交AC于D,∠ODA=45°.求证:AC是⊙O的切线.
8.(2022秋•平潭县校级期中)如图,△ABC为等腰三角形,O是底边BC的中点,过点O作OD⊥AB于点D,以点O为圆心,OD的长为半径作⊙O.求证:AC是⊙O的切线.
专项36 切线的证明方法归类(2大类型+5种方法)
证明一条直线是圆的切线的方法及辅助线的作法
(1)连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”
(2)作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”
【考点1 有公共点:连半径,证垂直】
方法1:特殊角计算法证垂直
【典例1】(2022•思明区校级一模)如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.
【解答】如图,连接OD,
∵OD=OA,
∴∠ODA=∠DAB=30°,
∴∠DOB=∠ODA+∠DAB=60°,
∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°,
即OD⊥BD,
∴直线BD与⊙O相切.
【变式1-1】(2021•广东二模)如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,连接BD,∠DAB=∠B=30°,求证:直线BD是⊙O的切线.
【解答】证明:连接OD,
∵OA=OD,∠DAB=∠B=30°,
∴∠ODA=∠DAB=∠B=30°,
又∠BOD为△AOD的外角,
∴∠BOD=∠DAB+∠ODA=60°,
∴∠ODB=180°﹣∠BOD﹣∠B=180°﹣60°﹣30°=90°,
即OD⊥BD,
∵OD是⊙O的半径.
∴直线BD是⊙O的切线.
【变式1-2】(2021秋•潍坊期末)如图,A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,CD=2,E是CD延长线上的一点,且AE=AC.
(1)求证:AE是⊙O的切线;
(2)求ED的长.
【解答】(1)证明:连接OA.
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠ACE=∠CAO=30°,
∴∠AOE=∠ACO+∠CAO=30°+30°=60°,
∵AE=AC,
∴∠E=∠ACE=30°,
∴∠OAE=90°,
∴OA⊥AE,
又∵OA是半径
∴AE是⊙O的切线;
方法2:等角代换法证垂直
【典例2】(2020秋•福州期末)如图,AB是⊙O的直径,C为半圆O上一点,直线l经过点C,过点A作AD⊥l于点D,连接AC,当AC平分∠DAB时,求证:直线l是⊙O的切线.
【解答】证明:连接OC,
∵AC平分∠DAB,
∴∠DAC=∠OAC,
又∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAC=∠OCA,
又∵l⊥AD,即∠ADC=90°,
∴∠DAC+∠DCA=90°,
∴∠OCA+∠DCA=90°,即∠OCD=90°,
∴OC⊥l,
∴l是圆O的切线.
【变式2-1】(2017秋•荆州区期末)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求⊙O的半径.
【解答】(1)证明:
连接OE、EC,
∵AC是⊙O的直径,
∴∠AEC=∠BEC=90°,
∵D为BC的中点,
∴ED=DC=BD,
∴∠1=∠2,
∵OE=OC,
∴∠3=∠4,
∴∠1+∠3=∠2+∠4,
即∠OED=∠ACB,
∵∠ACB=90°,
∴∠OED=90°,
∴DE是⊙O的切线;
【变式2-2】(2021秋•灌南县期末)已知:如图,AB是⊙O的直径,AB⊥AC,BC交⊙O于点D,点E是AC的中点,ED与AB的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若∠F=30°,BF=2,求△ABC外接圆的半径.
【解答】(1)证明:连接OD,
∵AB⊥AC,
∴∠CAB=90°,
∴∠CAD+∠DAO=90°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADC=180°﹣∠ADB=90°,
∵点E是AC的中点,
∴EA=ED=AC,
∴∠EAD=∠EDA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠EDA+∠ODA=90°,
∴∠ODE=90°,
∵OD是⊙O的半径,
∴DE是⊙O的切线;
方法3:平行线性质法证垂直
【典例3】(2021秋•吉林期末)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.求证:PD是⊙O的切线;
【解答】(1)证明:∵AB=AC,
∴∠B=∠C,
∵OP=OB,
∴∠B=∠OPB,
∴∠OPB=∠C,
∴OP∥AC,
∵PD⊥AC,
∴OP⊥PD,
∴PD是⊙O的切线;
【变式3-1】(2022•大兴区二模)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线;
【解答】(1)证明:连接OD;
∵AD是∠BAC的平分线,
∴∠1=∠3.
∵OA=OD,
∴∠1=∠2.
∴∠2=∠3.
∴OD∥AC.
∴∠ODB=∠ACB=90°.
∴OD⊥BC.
∴BC是⊙O切线.
【变式3-2】(2021•崆峒区一模)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC.
求证:DE是⊙O的切线.
【解答】(1)证明:连接OD,
∵D是BC的中点,
∴BD=CD.
∵OA=OB,
∴OD∥AC.
又∵DE⊥AC,
∴OD⊥DE.
∴DE是⊙O的切线;
【变式3-3】(2022•百色一模)如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连结DB,过点D作DE⊥BC,垂足为点E.求证:DE是⊙O的切线;
【解答】(1)证明:连接OD,
∵DE⊥BC,
∴∠DEC=90°,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵AB=BC,
∴AD=CD,
∵OA=OB,
∵DO是△ABC的中位线,
∴DO∥BC,
∴∠ODE=∠DEC=90°,
∵OD是⊙O的半径,
∴DE是⊙O的切线;
方法4: 全等三角形法证垂直
【典例4】(2022•东明县一模)已知,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O与BC相交于点E,在AC上取一点D,使得DE=AD,求证:DE是⊙O的切线.
【解答】(1)证明:连接OE、OD,
在△AOD和△EOD中,
,
∴△AOD≌△EOD(SSS),
∴∠OED=∠BAC=90°,
∴DE是⊙O的切线;
【变式4-1】(2021秋•虎林市校级期末)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点D,若E是AC的中点,连接DE.求证:DE为⊙O的切线.
【解答】证明:连接OD、OE,
∵BC是⊙O直径,E是AC的中点,
∴OE∥AB,
∴∠EOD=∠ODB,∠EOC=∠B,
又∵OB=OD,
∴∠B=∠ODB,
∴∠EOD=∠EOC,
又∵OC=OD,OE=OE,
∴△EOD≌△EOC(SAS),
∴∠EDO=∠ECO(全等三角形的对应角相等),
又∵∠ACB=90°,
∴∠EDO=90°,
又∵点D在⊙O上,
∴DE为⊙O的切线.
【考点2 无公共点:做垂直,证半径】
方法5 :角平分线的性质法证半径
【典例5】(2020•八步区一模)如图,在Rt△ABC中,∠BAC的角平分线交BC于点D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D,AB=5,BE=3.
求证:AC是⊙D的切线;
【解答】(1)证明:过点D作DF⊥AC于F;
∵AB为⊙D的切线,
∴∠B=90°,
∴AB⊥BC,
∵AD平分∠BAC,DF⊥AC,
∴BD=DF,
∴AC与⊙D相切;
【变式5-1】(2018•天河区校级一模)如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E
求证:BC是⊙D的切线;
【解答】(1)证明:过点D作DF⊥BC于点F,
∵∠BAD=90°,BD平分∠ABC,
∴AD=DF.
∵AD是⊙D的半径,DF⊥BC,
∴BC是⊙D的切线;
方法6 : 全等三角形法证半径
【典例6】如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径作圆,与BC相切于点C,过点A作AD⊥BO交BO的延长线于点D,且∠AOD=∠BAD.
(1)求证:AB为⊙O的切线;
(2)若AB=10,sin∠ABC=,求⊙O的半径.
【解答】(1)证明:过点O作OE⊥AB于点E,
∵AD⊥BO于点D,
∴∠D=90°,
∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,
∵∠AOD=∠BAD,
∴∠ABD=∠OAD,
又∵BC为⊙O的切线,
∴AC⊥BC,
∴∠BCO=∠D=90°,
∵∠BOC=∠AOD,
∴∠OBC=∠OAD=∠ABD,
∴OE=OC,
∵OE⊥AB,OE是⊙O的半径,
∴AB是⊙O的切线;
【变式6】(2020秋•开福区月考)如图,AB是⊙O的直径,点C,D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA的延长线与OC的延长线于点E,F,连接BF.求证:BF是⊙O的切线;
【解答】(1)证明:连接OD,如图,
∵四边形AOCD是平行四边形,
∵OA=OC,
∴四边形AOCD是菱形,
∴△OAD和△OCD都是等边三角形,
∴∠AOD=∠COD=60°,
∴∠FOB=60°,
∵EF为切线,
∴OD⊥EF,
∴∠FDO=90°,
在△FDO和△FBO中,
,
∴△FDO≌△FBO(SAS),
∴∠ODF=∠OBF=90°,
∴OB⊥BF,
∴BF是⊙O的切线;
1.(2022秋•利通区期末)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E,求证:AC是⊙D的切线.
【解答】证明:连接AD,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
在⊙D中,AD=BD,
∴∠BAD=∠B=30°,
∴∠ADC=60°,
∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣60°﹣30°=90°,
∴AD⊥AC,
又∵DA是半径,
∴AC是⊙D的切线.
2.(2019秋•黄冈期末)如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
(1)求证:点D是BC的中点:
(2)求证:DE是⊙O切线.
【解答】证明:(1)连接AD,
∵AB是直径,
∴AD⊥BC,
又∵AB=AC,
∴BD=CD,
∴点D是BC的中点;
(2)连接OD,
∵∠BAC=2∠BAD,∠BOD=2∠BAD,
∴∠BAC=∠BOD,
∴OD∥AC,
又∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切线.
3.(2022秋•宽城区校级期末)如图,BD是⊙O的直径,A是BD延长线上的一点,点E在⊙O上,BC⊥AE,交AE的延长线于点C,BC交⊙O于点F,且点E是的中点.
求证:AC是⊙O的切线.
【解答】证明:连接OE,
∵E是的中点,
∴∠OBE=∠CBE.
∵OE=OB,
∴∠OEB=∠OBE.
∴∠OEB=∠CBE.
∴OE∥BC.
∵BC⊥AC,
∴∠C=90°.
∴∠AEO=∠C=90°,
∴DE⊥AC.
又∵OE为半圆O的半径,
∴AC是⊙O的切线.
4.(2022秋•天河区校级期末)如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.
【解答】证明:连接OD,
∵AO=OB,D为AC的中点,
∴OD∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD是⊙O的半径,
∴DE是⊙O的切线.
5.(2021秋•新疆期末)如图,在Rt△ABC中,∠BAC=90°以AB为直径的⊙O与BC相交于点E.在AC上取一点D,使得DE=AD.
求证:DE是⊙O的切线.
【解答】证明:如图,连接OE、OD,
在△OED和△OAD中,
,
∴△OED≌△OAD(SAS),
∴∠OED=∠BAC=90°,
∴OE⊥DE,
∵OE是⊙O的半径,
∴DE是⊙O的切线.
6.(2022秋•长乐区期中)如图,在△OAB中,OA=OB=5,AB=8,⊙O的半径为3.
求证:AB是⊙O的切线.
【解答】证明:如图,过O作OC⊥AB于C,
∵OA=OB,AB=8,
∴AC=AB=4,
在Rt△OAC中,OC===3,
∵⊙O的半径为3,
∴OC为⊙O的半径,
∴AB是⊙O的切线.
7.(2020秋•厦门期末)如图,在△ABC中,AB=AC,以AB为直径作⊙O,过点O作OD∥BC交AC于D,∠ODA=45°.求证:AC是⊙O的切线.
【解答】证明:∵AB=AC,
∴∠C=∠B,
∵OD∥BC,
∴∠ODA=∠C=45°,
∴∠B=45°,
∴∠CAB=180°﹣∠B﹣∠C=180°﹣45°﹣45°=90°,
∴AC⊥AB,
∵AB为⊙O的直径,
∴AC是⊙O的切线.
8.(2022秋•平潭县校级期中)如图,△ABC为等腰三角形,O是底边BC的中点,过点O作OD⊥AB于点D,以点O为圆心,OD的长为半径作⊙O.求证:AC是⊙O的切线.
【解答】证明:连接OA,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,
∵OD⊥AB,
∴OF=OD,
∴AC是⊙O的切线.
相关试卷
这是一份北师大版九年级数学全册高分突破必练专题专项05解一元二次方程训练(5种方法)(原卷版+解析),共17页。
这是一份北师大版九年级数学全册高分突破必练专题专项04矩形中典型模型综合应用(4大类型)(原卷版+解析),共29页。
这是一份北师大版九年级数学全册高分突破必练专题专项45四点共圆(原卷版+解析),共40页。试卷主要包含了四点共圆,5FC等内容,欢迎下载使用。