所属成套资源:北师大版九年级数学全册高分突破必练专题(原卷版+解析)
北师大版九年级数学全册高分突破必练专题专项07一元二次方程的实际应用(5大类型)(原卷版+解析)
展开
这是一份北师大版九年级数学全册高分突破必练专题专项07一元二次方程的实际应用(5大类型)(原卷版+解析),共40页。试卷主要包含了传染、分裂问题,销售利润问题,几何面积问题等内容,欢迎下载使用。
类型一 变化率问题 :
设基准数为a ,两次增长(或下降)后为 b;增长率(下降率)为 x,第一次增长(或下降)后 为 ;第二次增长(或下降)后为 ².可列方程为 ²=b。
类型二 传染、分裂问题
有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 设每轮传染中平均一个人传染了x个人:
类型三 握手、比赛问题
握手问题:n个人见面,任意两个人都要握一次手,问总共握次手。赠卡问题:n个人相互之间送卡片,总共要送张卡片。
类型四 销售利润问题
(1)常用公式:利润=售价-成本;总利润=每件利润×销售量;
(2)每每问题中,单价每涨a元,少买y件。若涨价y元,则少买的数量为
类型五 几何面积问题
(1)如图①,设空白部分的宽为x,则;
(2)如图②,设阴影道路的宽为x,则
(3)如图③,栏杆总长为a,BC的长为b,则
类型六 动点与几何问题
关键是将点的运动关系表示出来,找出未知量与已知量的内在联系,根据面积或体积公式列出方程.
【典例1】(2022•金平区校级模拟)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末进馆288人次.若进馆人次的月平均增长率相同:
(1)求进馆人次的月平均增长率;
(2)因学校条件限制,图书馆月接纳能力不超过400人次.在进馆人次月平均增长率不变的前提下,学校图书馆能否接纳第四个月的进馆人次?请说明理由
【变式1-1】(2022•安徽模拟)据乘用车市场信息联席会(CPCA)数据显示,我国纯电动车发展迅速,2021年8月至10月,纯电动车月批发销量由24.9万辆增加到30.3万辆.设2021年8月至10月纯电动车批发销量的月平均增长率为x,则可列方程为( )
A.24.9(1+2x)=30.3
B.24.9×2(1+x)=30.3
C.24.9【1+(1+x)+(1+x)2】=30.3
D.24.9(1+x)2=30.3
【变式1-2】(2021·舒城期末)我县某贫围户2016年的家庭年收入为4000元,由于党的扶贫政策的落实,2017、2018年家庭年收入增加到共15000元,设平均每年的增长率为x,可得方程( )
A.4000(1+x)2=15000
B.4000+4000(1+x)+4000(1+x)2=15000
C.4000(1+x)+4000(1+x)2=15000
D.4000+4000(1+x)2=15000
【变式1-3】(2020·合肥模拟)某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为 x .根据题意列方程正确的是( )
A.250(1+x)2=900B.250(1+x%)2=900
C.250(1+x)+250(1+x)2=900 D.250+250(1+x)+250(1+x)2=900
【典例2】(2022•咸丰县模拟)有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x个人,则可列方程( )
A.(1+x)2=121B.(1﹣x)2=121
C.x+x(1+x)=121D.1+x+(1+x)2=121
【变式2-1】(2022春•启东市期末)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,则这种植物每个支干长出的小分支个数是( )
A.8B.7C.6D.5
【变式2-2】(2022•和平区一模)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是( )
A.1+x2=91B.(1+x)2=91
C.1+x+x2=91D.1+(1+x)+(1+x)2=91
【变式2-3】(2022春•新昌县期末)请根据图片内容,回答下列问题:
(1)每轮传染中,平均一个人传染了几个人?
(2)按照这样的速度传染,第三轮将新增多少名感染者(假设每轮传染人数相同)?
【典例3】(2022春•广饶县期末)一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共共握66次手.若设这次会议到会的人数为x人,依题意可列方程( )
A.x(x﹣1)=66B.=66
C.x(1+x)=66D.x(x﹣1)=66
【变式3-1】(2022春•百色期末)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为( )
A.5B.6C.7D.8
【变式3-3】(2022•鸡冠区校级一模)毕业前夕,九年级(11)班的同学每人将一份礼物与其他每一位同学互赠,作为珍贵的纪念,全班共赠出1980件礼物,那么这个班级共有学生( )
A.40人B.42人C.44人D.45人
【典例4】(2022春•金东区期末)尊老爱幼是中华民族的传统美德,菜商店为老人推出一款特价商品,每件商品的进价为15元,促销前销售单价为25元,平均每天能售出80件;根据市场调查,销售单价每降低0.5元,平均每天可多售出20件.不考虑其他因素的影响,若商店销售这款商品的利润要达到平均每天1280元,销售单价应降低多少元?
【变式4-1】(2022春•泰州期末)今年大德福超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.
(1)求四、五这两个月的月平均增长率.
(2)从六月份起,商场为了减少库存,从而采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场月获利4250元?
【变式4-2】(2022春•新泰市期末)2022年4月8日,CCTV﹣13新闻频道《朝闻天下》,报道了山东新泰《香椿进入收获期,“椿”意盎然助增收》,我市香椿畅销全国各地.当地某电商对一款成本价为30元的香椿商品进行直播销售,如果按每件40元销售,平均每月可卖出600件.通过市场调查发现,每件香椿商品售价每上涨1元,其月销售量就将减少10件.为了实现平均每月12000元的销售利润,
(1)这种商品的售价应定为多少?
(2)这时商家每月能售出该香椿商品多少件?
【变式4-3】(2022春•莱芜区期末)某农户生产经营一种农产品,已知这种农产品的成本价为每千克20元,经市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间满足一次函数关系,其图象如图所示.
(1)求y与x之间的函数关系式;
(2)该农户想要每天获得150元的利润,又要让利消费者,销售价应定为每千克多少元?
【典例5】(2022春•雨花区期末)某农户要利用一面25m长的墙建一个长方形的养鸡场,一边靠墙,另三边用木栅栏围成,木栅栏长40m.
(1)鸡场的面积能达到200m2吗?如果能,求出与墙平行的边的长;
(2)鸡场的面积能达到210m2吗?为什么?
【变式5-1】用一条长60cm的绳子围成一个面积为200cm2的长方形.设长方形的长为xcm,则可列方程为( )
A.x(30−x)=200B.x(30+x)=200
C.x(60+x)=200D.x(60−x)=200
【变式5-2】(2022春•蚌埠期末)如图,某中学课外兴趣小组准备围建一个矩形花园ABCD,其中一边靠墙,另外三边用总长为60m的篱笆围成,与墙平行的一边BC上要预留2m宽的入口(如图中MN所示,不用篱笆),已知墙长为28m.
(1)当矩形的长BC为多少米时,矩形花园的面积为300平方米;
(2)能否围成500平方米的矩形花园?若能求出BC长;若不能,说明理由.
【变式5-3】(2022春•槐荫区期末)如图,一长方形草坪长50米,宽30米,在草坪上有两条互相垂直且宽度相等的长方形小路(阴影部分),非阴影部分的面积是924米2.
(1)求小路的宽度;
(2)每平方米小路的建设费用为200元,求修建两条小路的总费用.
【典例6】(2021秋•泗阳县期末)如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.
(1)BP= cm;BQ= cm;(用t的代数式表示)
(2)D是AC的中点,连接PD、QD,t为何值时△PDQ的面积为40cm2?
【变式6-1】(2020秋•来宾期末)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )
A.2sB.3sC.4sD.5s
【变式6-2】(2021秋•兰山区期末)如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s;同时,动点Q从点B出发,沿BC方向运动,速度是1cm/s,则经过 s后,P,Q两点之间相距25cm.
【变式6-3】(2022春•肥东县期末)如图,在Rt△ABC中,AB=6cm,BC=8cm.点P从点A出发,沿AB边以1cm/s的速度向点B移动;点Q从点B同时出发,沿BC边以2cm/s的速度向点C移动.规定其中一个动点到达终点时,另一个动点也随之停止运动.问经过几秒后,P,Q两点的距离是4cm?
1.(2022春•平桂区 期末)某商品原价为20元,连续两次降价后售价为8元,设平均降价率为x,根据题意,可列方程为( )
A.20(1+x)2=8B.8(1+x)2=20C.20(1﹣x)2=8D.8(1﹣x)2=20
2.(2022春•南谯区期末)要组织一次篮球联赛,赛制为单循环形式,每两队之间要赛一场,计划安排15场比赛,则比赛组织者邀请球队的数量是( )
A.10B.8C.7D.6
3.(2022春•通州区期末)一个人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染的人数相等,则经过三轮传染后患流感的人数共有( )
A.7个B.49个C.121个D.512个
4.一个同学经过培训后会做某项实验,回到班级后第一节课他教会了若干个同学,第二节课会做的同学每人又教会了同样多的同学,这样全班共有36人会做这项实验,若设1人每次能教会x名同学,则可列方程为( )
A.x+(x+1)x=36B.(x+1)2=36
C.1+x+x2=36D.x+(x+1)2=36
5.(2022春•两江新区期末)某中学连续三年开展植树活动,已知2020年植树500棵,2022年植树720棵,假设该校这两年植树棵数的年平均增长率为x,根据题意可以列方程为( )
A.500(1+x)2=720
B.500(1+x%)2=720
C.500(1+2x)=720
D.500+500(1+x)+500(1+x)2=720
6.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另外三边用总长为55米的栅栏围成,若设栅栏AB的长为x米,则下列各方程中,正确的是( )
A.12x(55﹣x)=375B.12x(55﹣2x)=375
C.x(55﹣2x)=375D.x(55﹣x)=375
7.(2021秋•信丰县期末)如图,面积为50m2的矩形试验田一面靠墙(墙的长度不限),另外三面用20m长的篱笆围成,平行于墙的一边开有一扇1m宽的门(门的材料另计).设试验田垂直于墙的一边AB的长为x,则所列方程正确的是( )
A.(20+1﹣x)x=50B.(20﹣1﹣x)x=50
C.(20+1﹣2x)x=50D.(20﹣1﹣2x)x=50
8.某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边,若丝绸花边的面积为650cm2,设花边的宽度为xcm.根据题意得方程 .
9.(2022春•海门市期末)有一个人患了流感,经过两轮传染后共有144个人患了流感,每轮传染中平均一个人传染了几个人?
10.(2022•大连一模)第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有多少个队参加比赛?
11.某商店进了一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,使库存减少最快,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,当每件衬衫降价多少元时,商场平均每天盈利达到1200元?
12.深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.
(1)求平均每次降价盈利的百分率;
(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?
13.如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.
(1)求原正方形空地的边长;
(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.
14.(2022春•庐阳区校级期中)如图,把长40cm.宽30cm的长方形ABCD纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计).
(1)用含x的代数式表示EF、FG;
(2)当长方体纸盒的底面EFGH的面积等于300cm2,求小正方形的边长.
15.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0
相关试卷
这是一份北师大版九年级数学全册高分突破必练专题专项04矩形中典型模型综合应用(4大类型)(原卷版+解析),共29页。
这是一份北师大版九年级数学全册高分突破必练专题专项37切线的判定与性质的综合应用(原卷版+解析),共44页。
这是一份北师大版九年级数学全册高分突破必练专题专项20锐角三角函数实际应用-拥抱型(原卷版+解析),共15页。