2022-2023学年四川省南充市阆中市河楼中心学校八年级(下)期末数学试卷
展开
这是一份2022-2023学年四川省南充市阆中市河楼中心学校八年级(下)期末数学试卷,共22页。
A.1B.2C.3D.4
2.(3分)矩形具有而菱形不具有的性质是( )
A.两组对边分别平行B.对角线相等
C.对角线互相平分D.两组对角分别相等
3.(3分)把二次根式化简成最简二次根式,结果为( )
A.3B.9C.D.
4.(3分)下列各组数据中能作为直角三角形的三边长的是( )
A.1,2,2B.1,1,C.4,5,6D.1,,2
5.(3分)直线y=kx﹣1一定经过点( )
A.(1,0)B.(1,k)C.(0,k)D.(0,﹣1)
6.(3分)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是( )
A.72°B.90°C.100°D.108°
7.(3分)能使等式成立的x的取值范围是( )
A.x≠2B.x≥0C.x>2D.x≥2
8.(3分)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息,下列说法正确个数为( )
①甲的速度是5km/h
②乙的速度是10km/h
③乙比甲晚出发1h
④甲比乙晚到B地3h.
A.1B.2C.3D.4
9.(3分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2),点C在直线AB上,且S△BOC=2,则点C的坐标是( )
A.(﹣2,﹣2)B.(﹣2,﹣6)
C.(2,2)D.(2,2)或(﹣2,﹣6)
10.(3分)如图:正方形ABCD的面积是1,E、F分别是BC、DC的中点,则以EF为边的正方形EFGH的周长是( )
A. +1B.C.2+1D.2
二.填空题(共6小题,每小题3分,共18分)
11.(3分)已知:△ABC中,AB=4,AC=3,BC=,则△ABC的面积是 .
12.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(),则不等式2x>ax+4的解集为 .
13.(3分)若x<2,化简+|3﹣x|的正确结果是 .
14.(3分)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为 .
15.(3分)已知直线a平行于x轴,点M(﹣2,﹣3)是直线a上的一个点,若点N也是直线a上的一个点,请写出符合条件的一个点N的坐标,N( , ).
16.(3分)如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于 cm.
三.解答题(满分0分)
17.计算:
(1)﹣;
(2)(2+3)2﹣(2﹣3)2.
18.如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)DE=BF;
(2)四边形DEBF是平行四边形.
19.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.
20.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的解析式.
21.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.
(1)求证:AF﹣BF=EF;
(2)四边形EFGH是什么四边形?并证明;
(3)若AB=2,BP=1,求四边形EFGH的面积.
22.某电信公司提供了A,B两种通讯方案,其通讯费用y(元)与通话时间x(分)之间的关系如图所示,观察图象,回答下列问题:
(1)某人若按A方案通话时间为100分钟时通讯费用为 元;若通讯费用为70元,则按B方案通话时间为 分钟;
(2)求B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式;
(3)当B方案的通讯费用为50元,通话时间为170分钟时,若此时与A方案的通讯费用相比差10元,直接写出两种方案通话时间相差多少分钟.
23.如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折痕,使点A与点C重合,折痕后在其一面着色(如图2),观察图形对比前后变化,回答下列问题:
(1)GF FD:(直接填写=、>、<)
(2)判断△CEF的形状,并说明理由;
(3)小明通过此操作有以下两个结论:
①四边形EBCF的面积为4cm2
②整个着色部分的面积为5.5cm2
运用所学知识,请论证小明的结论是否正确.
24.【提出问题】
(1)已知:菱形ABCD的边长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;
【类比探究】
(2)在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;
【拓展迁移】
(3)在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.
2022-2023学年四川省南充市阆中市河楼中心学校八年级(下)期末数学试卷
参考答案与试题解析
一.选择题(共10小题,每小题3分,共30分)
1.【分析】根据众数的定义,从数据中找出现次数最多的数解答即可.
【解答】解:1,2,4,4,3中,
出现次数最多的数是4,
故众数4.
故选:D.
【点评】此题考查了众数的定义,一组数据中出现次数最多的数叫做众数.
2.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.
【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;
B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;
C、矩形与菱形的对角线都互相平分,故本选项错误;
D、矩形与菱形的两组对角都分别相等,故本选项错误.
故选:B.
【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.
3.【分析】根据二次根式的性质即可化简.
【解答】解:原式==,
故选:D.
【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
4.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.
【解答】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;
C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;
D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.
故选:D.
【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.
5.【分析】根据一次函数y=kx+b(k≠0)与y轴的交点为(0,b)进行解答即可.
【解答】解:∵直线y=kx﹣1中b=﹣1,
∴此直线一定与y轴相交于(0,﹣1)点,
∴此直线一定过点(0,﹣1).
故选:D.
【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b(k≠0)与y轴的交点为(0,b).
6.【分析】由菱形的性质得出∠ADP=∠CDP=∠ADC,PA=PC,再由线段垂直平分线的性质得出PA=PD,证出PD=PC,得出∠PCD=∠CDP=36°,由外角性质即可求出∠CPB.
【解答】解:连接PA,如图所示:
∵四边形ABCD是菱形,
∴∠ADP=∠CDP=∠ADC=36°,BD所在直线是菱形的对称轴,
∴PA=PC,
∵AD的垂直平分线交对角线BD于点P,
∴PA=PD,
∴PD=PC,
∴∠PCD=∠CDP=36°,
∴∠CPB=∠PCD+∠CDP=72°;
故选:A.
【点评】本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形是等腰三角形是解决问题的关键.
7.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.
【解答】解:由题意可得,,解之得x>2.
故选:C.
【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.
8.【分析】根据图象可知,甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度.
【解答】解:甲的速度是:20÷4=5km/h;
乙的速度是:20÷1=20km/h;
由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
故①③正确.
故选:B.
【点评】此题主要考查了函数的图象,重点考查学生的读图获取信息的能力,要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
9.【分析】设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.
【解答】解:
设直线AB的解析式为y=kx+b(k≠0),
∵直线AB过点A(1,0)、点B(0,﹣2),
∴,解得,
∴直线AB的解析式为y=2x﹣2.
设点C的坐标为(x,y),
∵S△BOC=2,
∴•2•|x|=2,
解得x=2或﹣2,
当x=2时,y=2×2﹣2=2,
∴点C的坐标是(2,2);
当x=﹣2时,y=2×(﹣2)﹣2=﹣6,
∴点C坐标为(﹣2,﹣6);
综上可知点C的坐标为(2,2)或(﹣2,﹣6),
故选:D.
【点评】本题考查了待定系数法求函数解析式,解答此题不仅要熟悉函数图象上点的坐标特征,还要熟悉三角形的面积公式.
10.【分析】由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
【解答】解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,
∴正方形EFGH的周长=4EF=4×=2;
故选:D.
【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键.
二.填空题(共6小题,每小题3分,共18分)
11.【分析】根据题意可得出AB2=AC2+BC2,再由勾股定理的逆定理可得出△ABC为Rt△,从而得出△ABC的面积.
【解答】解:∵AB=4,AC=3,BC=,
∴AB2=16,AC2=9,BC2=7,
∴AB2=AC2+BC2,
∴△ABC为直角三角形,
∴S△ABC=AC•BC=.
故答案为: .
【点评】本题考查了勾股定理的逆定理,已知三角形的三边满足a2+b2=c2,从而得出三角形为直角三角形.
12.【分析】由于函数y=2x和y=ax+4的图象相交于点A(),观察函数图象得到当x>时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>.
【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(),
∴当x>时,2x>ax+4,
即不等式2x>ax+4的解集为x>.
故答案为x>.
【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13.【分析】先根据x的取值范围,判断出x﹣2和3﹣x的符号,然后再将原式进行化简.
【解答】解:∵x<2,
∴x﹣2<0,3﹣x>0;
∴+|3﹣x|=﹣(x﹣2)+(3﹣x)
=﹣x+2+3﹣x=5﹣2x.
【点评】本题涉及的知识有:二次根式的性质及化简、绝对值的化简.
14.【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.
【解答】解:根据勾股定理,AB==,
BC==2,
AC==3,
∵AC2+BC2=AB2=26,
∴△ABC是直角三角形,
∵点D为AB的中点,
∴CD=AB=×=.
故答案为:.
【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.
15.【分析】由直线a平行于x轴,且点M、N均为直线a上的一点,知点M、N的纵坐标相等,为﹣3,据此解答可得.
【解答】解:∵直线a平行于x轴,且点M、N均为直线a上的一点,
∴点M、N的纵坐标相等,为﹣3,
则符合条件的一个点N的坐标可以是(2,﹣3),
故答案为:2,﹣3.
【点评】本题主要考查坐标与图形的性质,掌握平行于x的轴的直线上所有点的纵坐标相等是解题的关键.
16.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.
【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,
∵四边形ABCD为正方形,
∴AD=DC=PN,
在Rt△ADE中,∠DAE=30°,AD=3cm,
∴tan30°=,即DE=cm,
根据勾股定理得:AE==2cm,
∵M为AE的中点,
∴AM=AE=cm,
在Rt△ADE和Rt△PNQ中,
,
∴Rt△ADE≌Rt△PNQ(HL),
∴DE=NQ,∠DAE=∠NPQ=30°,
∵PN∥DC,
∴∠PFA=∠DEA=60°,
∴∠PMF=90°,即PM⊥AF,
在Rt△AMP中,∠MAP=30°,cs30°=,
∴AP===2cm;
由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,
综上,AP等于1cm或2cm.
故答案为:1或2.
【点评】此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
三.解答题(满分0分)
17.【分析】(1)先化简,再计算减法即可;
(2)先利用完全平方公式展开,再计算加减即可.
【解答】解:(1)原式=2﹣
=;
(2)原式=12+12+18﹣12+12﹣18
=24.
【点评】本题考查了实数的运算,熟练掌握运算法则是关键.
18.【分析】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.
(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CB,
∴∠DAE=∠BCF,
在△ADE和△CBF中,
∴△ADE≌△CBF,
∴DE=BF.
(2)由(1),可得△ADE≌△CBF,
∴∠ADE=∠CBF,
∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,
∴∠DEF=∠BFE,
∴DE∥BF,
又∵DE=BF,
∴四边形DEBF是平行四边形.
【点评】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.
19.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的平均成绩,再根据方差公式进行计算;
(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.
【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),
则中位数是9.(5分);
乙队成绩中10出现了4次,出现的次数最多,
则乙队成绩的众数是(10分);
故答案为:9.5,10;
(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,
则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;
(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,
∴成绩较为整齐的是乙队;
故答案为:乙.
【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
20.【分析】(1)先根据A、B两点是直线与两坐标轴的交点求出两点坐标,再由勾股定理求出AB的长,由图形翻折变换的性质得出AC=AB,故可得出C点坐标;
(2)设点D的坐标为(0,y),由图形翻折变换的性质可知CD=BD,在Rt△OCD中由勾股定理可求出y的值,进而得出D点坐标,利用待定系数法即可求出直线CD的解析式.
【解答】解:(1)∵直线y=﹣x+8与x轴,y轴分别交于点A,点B,
∴A(6,0),B(0,8),
在Rt△OAB中,∠AOB=90°,OA=6,OB=8,
∴AB==10,
∵△DAB沿直线AD折叠后的对应三角形为△DAC,
∴AC=AB=10.
∴OC=OA+AC=OA+AB=16.
∵点C在x轴的正半轴上,
∴点C的坐标为C(16,0).
(2)设点D的坐标为(0,y)(y<0),
由题意可知CD=BD,CD2=BD2,
在Rt△OCD中,由勾股定理得162+y2=(8﹣y)2,
解得y=﹣12.
∴点D的坐标为(0,﹣12),
可设直线CD的解析式为 y=kx﹣12(k≠0)
∵点C(16,0)在直线y=kx﹣12上,
∴16k﹣12=0,
解得k=,
∴直线CD的解析式为y=x﹣12.
【点评】本题考查的是一次函数综合题,涉及到图形翻折变换的性质、勾股定理及用待定系数法求一次函数的解析式,难度适中.
21.【分析】(1)利用全等三角形的判定首先得出△AED≌△BFA,进而得出AE=BF,即可证明结论;
(2)首先得出四边形EFGH是矩形,再利用△AED≌△BFA,同理可得:△AED≌△DHC,进而得出EF=EH,即可得出答案;
(3)首先求出AP的长,再利用三角形面积关系得出BF,AF的长,进而求出EF的长即可得出答案.
【解答】(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,
∴∠AFB=∠AED=∠DHC=90°,
∴∠ADE+∠DAE=90°,
又∵∠DAE+∠BAF=90°,
∴∠ADE=∠BAF,
在△AED和△BFA中,
,
∴△AED≌△BFA,
∴AE=BF,
∴AF﹣AE=EF,即AF﹣BF=EF;
(2)证明:
∵∠AFB=∠AED=∠DHC=90°,
∴四边形EFGH是矩形,
∵△AED≌△BFA,同理可得:△AED≌△DHC,
∴△AED≌△BFA≌△DHC,
∴DH=AE=BF,AF=DE=CH,
∴DE﹣DH=AF﹣AE,
∴EF=EH,
∴矩形EFGH是正方形;
(3)解:∵AB=2,BP=1,
∴AP=,
∵S△ABP=×BF×AP=×BF×=1×2×,
∴BF=,
∵∠BAF=∠PAB,∠AFB=∠ABP=90°,
∴△ABF∽△APB,
∴==,
∴AF=,
∴EF=AF﹣AE=﹣=,
∴四边形EFGH的面积为:()2=.
【点评】此题主要考查了正方形的判定以及全等三角形的判定与性质,利用已知得出BF=AE以及求出EF的长是解题关键.
22.【分析】(1)观察函数图象,A方案通话时间在120分钟内通讯费用都为30元,B方案通话时间为250分钟对应的费用为70元;
(2)分类讨论:当x≤200时,易得y=50元;当x≥200时,利用待定系数法求B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式为y=x﹣30,综上所述,得到y=;
(3)先用同样方法求出对于A方案,当x>120时的解析式y=x﹣18,由于B方案与A方案的通讯费用相比差10元,则A方案的通讯费用为60元或40元,接着分别计算出函数值为40或60所对应的自变量,然后求出它们与170的差即可得到两种方案的通讯费用相差10元时,通话的时间差.
【解答】解:(1)某人若按A方案通话时间为100分钟时通讯费用为30元;若通讯费用为70元,则按B方案通话时间为250分钟;
故答案为30,250;
(2)由图象知:当x≤200时,通讯费y=50元;
当x≥200时,设B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式为y=kx+b,
把x=200,y=50;x=250,y=70代入,得,解得
所以当x>200时,设B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式为:y=x﹣30,
综上所述,y=;
(3)对于A方案;当x>120时,可求得y=x﹣18,
因为当B方案的通讯费用为50元,此时与A方案的通讯费用相比差10元,
所以A方案的通讯费用为60元或40元,
当y=40时, x﹣18=40,解得x=145,则170﹣145=25(分钟);
当y=60时, x﹣18=40,解得x=195,则195﹣170=25(分钟);
所以当B方案的通讯费用为50元,通话时间为170分钟时,若两种方案的通讯费用相差10元,通话时间相差25分钟.
【点评】本题考查了一次函数的应用:用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分
23.【分析】(1)根据翻折的性质解答;
(2)根据两直线平行,内错角相等可得∠AEF=∠CFE,再根据翻折的性质可得∠AEF=∠FEC,从而得到∠CFE=∠FEC,根据等角对等边可得CE=CF,从而得解;
(3)①根据翻折的性质可得AE=EC,然后求出AE=CF,再根据图形的面积公式列式计算即可得解;
②设GF=x,表示出CF,然后在Rt△CFG中,利用勾股定理列式求出GF,根据三角形的面积公式求出SGFC,然后计算即可得解.
【解答】解:(1)由翻折的性质,GD=FD;
(2)△CEF是等腰三角形.
∵矩形ABCD,
∴AB∥CD,
∴∠AEF=∠CFE,
由翻折的性质,∠AEF=∠FEC,
∴∠CFE=∠FEC,
∴CF=CE,
故△CEF为等腰三角形;
(3)①由翻折的性质,AE=EC,
∵EC=CF,
∴AE=CF,
∴S四边形EBCF=(EB+CF)•BC=AB•BC=×4×2×=4cm2;
②设GF=x,则CF=4﹣x,
∵∠G=90°,
∴x2+22=(4﹣x)2,
解得x=1.5,
∴SGFC=×1.5×2=1.5,
S着色部分=1.5+4=5.5;
综上所述,小明的结论正确.
【点评】本题考查了翻折变换的性质,矩形的性质,平行线的性质,等腰三角形的判定,以及勾股定理的应用,熟记翻折前后的两个图形能够完全重合是解题的关键.
24.【分析】(1)首先判断出△ACD是等边三角形,即可判断出AC=AD=4;然后根据全等三角形判定的方法,判断出△APF≌△CPE,即可判断出CE=AF,据此求出AE+AF的值是多少即可.
(2)首先取AC上的点G,使得CG=PD=1,判断出GP∥CD,即可判断出∠APF=∠GPE;然后根据全等三角形判定的方法,判断出△APF≌△GPE,即可判断出GE=AF,据此求出AE+AF的值是多少即可.
(3)首先作PH∥CD交CE于点H,判断出△AHP∽△ACD,即可判断出△AHP是等边三角形;然后根据全等三角形判定的方法,判断出△APF≌△HPE,即可判断出AF=HE,再根据PA=AH,可得AE=PA+AF,所以AE﹣AF=m,据此解答即可.
【解答】解:(1)如图1,,
∵四边形ABCD是菱形,
∴PA=PC,
∵∠ADC=60°,
∴△ACD是等边三角形,
∴AC=AD=4,
又∵△PEF为等边三角形,
∴∠ADC=∠EPF=60°,
∴∠APF=∠CPE,
在△APF和△CPE中,
∴△APF≌△CPE,
∴CE=AF,
∴AE+AF=AE+CE=AC=4,
即AE+AF的值是4.
(2)如图2,点G是AC上的一点,且满足CG=PD=1,,
∵CG=PD,AC=AD,
∴AG=AP,
∴,
∴GP∥CD,
∴∠GPA=∠CDA=60°,
又∵EPF=60°,
∴∠APF=∠GPE,
在△APF和△GPE中,
∴△APF≌△GPE,
∴GE=AF,
∴AE+AF=AE+GE=AG=AC﹣CG=4﹣1=3,
即AE+AF的值是3.
(3)如图3,作PH∥CD交CE于点H,,
由(1),可得△ACD是等边三角形,
∵PH∥CD,
∴△AHP∽△ACD,
∴△AHP是等边三角形,
∴PA=PH,∠APH=∠EPF=60°,
∴∠FPA=∠EPH,
在△APF和△HPE中,
∴△APF≌△HPE,
∴AF=HE,
又∵PA=AH,
∴AE=PA+AF,
∴AE﹣AF=m.
【点评】(1)此题主要考查了四边形综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.
(2)此题还考查了全等三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.
(3)此题还考查了三角形相似的判定和性质的应用,以及菱形的性质和应用,要熟练掌握.
甲
7
8
9
7
10
10
9
10
10
10
乙
10
8
7
9
8
10
10
9
10
9
相关试卷
这是一份2022-2023学年四川省达州市达川区百节中心学校八年级(下)期末数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年四川省达州市达川区百节中心学校八年级(下)期末数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年四川省南充市阆中市水观中学七年级(下)期末数学模拟试卷(含解析),共17页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。