终身会员
搜索
    上传资料 赚现金

    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(2份打包,原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(原卷版).doc
    • 解析
      中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(解析版).doc
    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(原卷版)第1页
    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(原卷版)第2页
    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(原卷版)第3页
    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(解析版)第1页
    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(解析版)第2页
    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(解析版)第3页
    还剩32页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(2份打包,原卷版+解析版)

    展开

    这是一份中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第03讲分式与二次根式27个考点知识精讲原卷版doc、中考数学二轮复习冲刺第03讲分式与二次根式27个考点知识精讲解析版doc等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。


    1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;
    2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.
    【知识导图】
    【考点梳理】
    一.分式的定义
    (1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.
    (2)因为0不能做除数,所以分式的分母不能为0.
    (3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.
    (4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.
    (5)分式是一种表达形式,如x++2是分式,如果形式都不是的形式,那就不能算是分式了,如:(x+1)÷(x+2),它只表示一种除法运算,而不能称之为分式,但如果用负指数次幂表示的某些代数式如(a+b)﹣2,y﹣1,则为分式,因为y﹣1=仅是一种数学上的规定,而非一种运算形式.
    二.分式有意义的条件
    (1)分式有意义的条件是分母不等于零.
    (2)分式无意义的条件是分母等于零.
    (3)分式的值为正数的条件是分子、分母同号.
    (4)分式的值为负数的条件是分子、分母异号.
    三.分式的值为零的条件
    分式值为零的条件是分子等于零且分母不等于零.
    注意:“分母不为零”这个条件不能少.
    四.分式的值
    分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.
    五.分式的基本性质
    (1)分式的基本性质:
    分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
    (2)分式中的符号法则:
    分子、分母、分式本身同时改变两处的符号,分式的值不变.
    【方法技巧】利用分式的基本性质可解决的问题
    1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.
    2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
    3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.
    六.约分
    (1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
    (2)确定公因式要分为系数、字母、字母的指数来分别确定.
    ①分式约分的结果可能是最简分式,也可能是整式.
    ②当分子与分母含有负号时,一般把负号提到分式本身的前面.
    ③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.
    (3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
    七.通分
    (1)通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.
    (2)通分的关键是确定最简公分母.
    ①最简公分母的系数取各分母系数的最小公倍数.
    ②最简公分母的字母因式取各分母所有字母的最高次幂的积.
    (3)规律方法总结:通分时若各分式的分母还能分解因式,一定要分解因式,然后再去找各分母的最简公分母,最简公分母的系数为各分母系数的最小公倍数,因式为各分母中相同因式的最高次幂,各分母中不相同的因式都要作为最简公分母中的因式,要防止遗漏因式.
    八.最简分式
    最简分式的定义:

    一个分式的分子与分母没有公因式时,叫最简分式.
    和分数不能化简一样,叫最简分数.
    九.最简公分母
    (1)最简公分母的定义:
    通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. (2)一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.
    十.分式的乘除法
    (1)分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.
    (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
    (3)分式的乘方法则:把分子、分母分别乘方.
    (4)分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.
    (5)规律方法总结:
    ①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.
    ②整式和分式进行运算时,可以把整式看成分母为1的分式.
    ③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.
    十一.分式的加减法
    (1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.
    (2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.
    说明:
    ①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.
    ②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.
    十二.分式的混合运算
    (1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.
    (2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
    (3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.
    【规律方法】分式的混合运算顺序及注意问题
    1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.
    2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.
    3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.
    十三.分式的化简求值
    先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
    【规律方法】分式化简求值时需注意的问题
    1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.
    2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.
    十四.零指数幂
    零指数幂:a0=1(a≠0)
    由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0)
    注意:00≠1.
    十五.负整数指数幂
    负整数指数幂:a﹣p=1ap(a≠0,p为正整数)
    注意:①a≠0;
    ②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.
    ③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
    ④在混合运算中,始终要注意运算的顺序.
    十六.列代数式(分式)
    (1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.
    (2)列代数式五点注意:①仔细辨别词义. ②分清数量关系. ③注意运算顺序.④规范书写格式.⑤正确进行代换.
    注意代数式的正确书写:出现除号的时候,用分数线代替.
    十七.二次根式的定义
    二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.
    ①“”称为二次根号
    ②a(a≥0)是一个非负数;
    学习要求:
    理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.
    十八.二次根式有意义的条件
    判断二次根式有意义的条件:
    (1)二次根式的概念.形如(a≥0)的式子叫做二次根式.
    (2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.
    (3)二次根式具有非负性.(a≥0)是一个非负数.
    学习要求:
    能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.
    【规律方法】二次根式有无意义的条件
    1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.
    2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.
    十九.二次根式的性质与化简
    (1)二次根式的基本性质:
    ①≥0; a≥0(双重非负性).
    ②()2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式).
    ③=|a|=(算术平方根的意义)
    (2)二次根式的化简:
    ①利用二次根式的基本性质进行化简;
    ②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
    =•(a≥0,b≥0)=(a≥0,b>0)
    (3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.
    【规律方法】二次根式的化简求值的常见题型及方法
    1.常见题型:与分式的化简求值相结合.
    2.解题方法:
    (1)化简分式:按照分式的运算法则,将所给的分式进行化简.
    (2)代入求值:将含有二次根式的值代入,求出结果.
    (3)检验结果:所得结果为最简二次根式或整式.
    二十.最简二次根式
    最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
    我们把满足上述两个条件的二次根式,叫做最简二次根式.
    最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.
    如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;
    含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.
    二十一.二次根式的乘除法
    (1)积的算术平方根性质:=•(a≥0,b≥0)
    (2)二次根式的乘法法则:•=(a≥0,b≥0)
    (3)商的算术平方根的性质:=(a≥0,b>0)
    (4)二次根式的除法法则:=(a≥0,b>0)
    规律方法总结:
    在使用性质•=(a≥0,b≥0)时一定要注意a≥0,b≥0的条件限制,如果a<0,b<0,使用该性质会使二次根式无意义,如()×()≠﹣4×﹣9;同样的在使用二次根式的乘法法则,商的算术平方根和二次根式的除法运算也是如此.
    二十二.分母有理化
    (1)分母有理化是指把分母中的根号化去.
    分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.
    例如:①==;②==.
    (2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.
    一个二次根式的有理化因式不止一个.
    例如:﹣的有理化因式可以是+,也可以是a(+),这里的a可以是任意有理数.
    二十三.同类二次根式
    同类二次根式的定义:
    一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
    合并同类二次根式的方法:
    只合并根式外的因式,即系数相加减,被开方数和根指数不变.
    【知识拓展】同类二次根式
    把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.
    (1)同类二次根式类似于整式中的同类项.
    (2)几个同类二次根式在没有化简之前,被开方数完全可以互不相同.
    (3)判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.
    二十四.二次根式的加减法
    (1)法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    (2)步骤:
    ①如果有括号,根据去括号法则去掉括号.
    ②把不是最简二次根式的二次根式进行化简.
    ③合并被开方数相同的二次根式.
    (3)合并被开方数相同的二次根式的方法:
    二次根式化成最简二次根式,如果被开方数相同则可以进行合并.合并时,只合并根式外的因式,即系数相加减,被开方数和根指数不变.
    二十五.二次根式的混合运算
    (1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:
    ①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.
    ②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.
    (2)二次根式的运算结果要化为最简二次根式.
    (3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    二十六.二次根式的化简求值
    二次根式的化简求值,一定要先化简再代入求值.
    二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.
    二十七.二次根式的应用
    把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.
    二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.
    【典型例题】
    一.分式的定义(共1小题)
    1.(2021•罗湖区校级模拟)下列代数式中,是分式的为( )
    A.B.C.D.
    二.分式有意义的条件(共2小题)
    2.(2022•新华区校级一模)若有意义,则下列说法正确的是( )
    A.x>﹣2B.x>﹣2且x≠0C.x≠﹣2D.x≠0
    3.(2022•沙坪坝区校级三模)对x、y定义一种新运算T,规定:T(x,y)=axy+bx﹣4(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a×0×1+b×0﹣4=﹣4,若T(2,1)=2,T(﹣1,2)=﹣8,则结论正确的个数为( )
    (1)a=1,b=2;
    (2)若T(m,n)=0(n≠﹣2),则;
    (3)若T(m,n)=0(n≠﹣2),m、n均取整数,则或或;
    (4)若T(m,n)=0(n≠﹣2),当n取s、t时,m对应的值为c、d,当t<s<﹣2时,c<d;
    (5)若T(kx,y)=T(ky,x)对任意有理数x、y都成立(这里T(x、y)和T(y、x)均有意义),则k=0.
    A.2个B.3个C.4个D.5个
    三.分式的值为零的条件(共1小题)
    4.(2022•顺平县二模)已知分式有意义且值为零(a,b,c均为正实数),若以a,b,c的值为三条线段的长构造三角形,则此三角形一定为( )
    A.等腰三角形B.等边三角形
    C.直角三角形D.等腰直角三角形
    四.分式的值(共4小题)
    5.(2022•全椒县一模)已知x﹣y=2xy(x≠0),则的值为( )
    A.﹣B.﹣3C.D.3
    6.(2022•泉港区模拟)若分式的值为负数,则x的取值范围是 .
    7.(2022•呈贡区二模)若m=2n≠0,则的值为 .
    8.(2022•锡山区校级二模)有一个分式两位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:当x=﹣2时,分式的值为1.请你写出满足上述全部特点的一个分式: .
    五.分式的基本性质(共2小题)
    9.(2022•德江县二模)下列变形正确的是( )
    A.
    B.
    C.
    D.
    10.(2022•夏津县二模)下列运算正确的是( )
    A.(a﹣b)2=a2﹣b2B.
    C.m5﹣m3=m2D.﹣a2+2a2=a2
    六.约分(共2小题)
    11.(2021•开平区一模)若,则m+n=( )
    A.3B.﹣3C.D.
    12.(2022•镇海区校级二模)先约分,再求值:,其中a=﹣2,b=.
    七.通分(共1小题)
    13.(2020•南岸区校级模拟)求一组正整数的最小公倍数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求一组正整数最小公倍数的一种方法﹣﹣少广术,术曰:“置全步及分母子,以最下分母遍乘诸分子及全步,各以其母除其子,置之于左.命通分者,又以分母遍乘诸分子及已通者,皆通而同之,并之为法.置所求步数,以全步积分乘之为实.实如法而一,得从步.”意思是说,要求一组正整数的最小公倍数,先将所给一组正整数分别变为其倒数,首项前增一项“1”,然后以最末项分母分别乘各项,并约分;再用最末项分数的分母分别乘各项,再约分,…;如此类推,直到各项都为整数止,则首项即为原组正整数之最小公倍数.
    例如:求6与9的最小公倍数.
    解:第一步:1,;
    第二步:9,,1:
    第三步:18,3,2
    所以,6与9的最小公倍数是18.
    请用以上方法解决下列问题:
    (1)求54与45的最小公倍数;
    (2)求三个数6,51,119的最小公倍数.
    八.最简分式(共1小题)
    14.(2022•江油市二模)下列分式属于最简分式的是( )
    A.B.
    C.D.
    九.最简公分母(共1小题)
    15.(2021•越秀区校级二模)分式,,的最简公分母是( )
    A.3xB.xC.6x2D.6x2y2
    一十.分式的乘除法(共1小题)
    16.(2022•鱼峰区模拟)计算的结果是( )
    A.2B.2a+2C.1D.
    一十一.分式的加减法(共1小题)
    17.(2022•东莞市校级二模)计算﹣1的结果是( )
    A.B.﹣C.D.
    一十二.分式的混合运算(共1小题)
    18.(2022•邯郸二模)在分式加减运算中,常用到下列四个依据:
    Ⅰ.合并同类项
    Ⅱ.约分
    Ⅲ.同分母分式的加减法则
    Ⅳ.通分
    化简﹣
    =+①
    =②
    =③
    =﹣④
    则正确的表示是( )
    A.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅰ,④﹣ⅡB.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅲ,④﹣Ⅱ
    C.①﹣Ⅱ,②﹣Ⅰ,③﹣Ⅲ,④﹣ⅣD.①﹣Ⅱ,②﹣Ⅲ,③﹣Ⅰ,④﹣Ⅳ
    一十三.分式的化简求值(共1小题)
    19.(2022•如皋市二模)若a+b=2,则代数式的值为( )
    A.B.﹣C.2D.﹣2
    一十四.零指数幂(共1小题)
    20.(2022•惠安县模拟)计算(﹣5)0的结果是( )
    A.1B.﹣5C.0D.﹣
    一十五.负整数指数幂(共1小题)
    21.(2022•路南区三模)下列计算正确的是( )
    A.B.
    C.D.
    一十六.列代数式(分式)(共2小题)
    22.(2022•玉环市一模)小明和小亮期中考试的语文、数学成绩分别都是80分,m分,到了期末考时,小明期末考试的语文、数学两科成绩依次比期中考试增长了20%,10%.两科总成绩比期中增长的百分数为a.小亮期末考试的语文、数学两科成绩依次比期中考试增长了15%,10%.两科总成绩比期中增长的百分数为b.则( )
    A.a=bB.a>bC.a<bD.4a=3b
    23.(2022•思明区校级模拟)生活中有这么一个现象:“有一杯a克的糖水里含有b克糖,如果在这杯糖水里再加入m克糖(仍不饱和),则糖水更甜了”,其中a>b>0,m>0.
    (1)加入m克糖之前糖水的含糖率A= ;加入m克糖之后糖水的含糖率B= ;
    (2)请你解释一下这个生活中的现象.
    一十七.二次根式的定义(共1小题)
    24.(2022•鼓楼区校级二模)若x为任意实数,下列各式一定是二次根式的是( )
    A.B.C.D.
    一十八.二次根式有意义的条件(共1小题)
    25.(2022•东莞市校级二模)要使式子有意义,x的取值应满足( )
    A.x≠2B.x≤C.x≥2D.x≥
    一十九.二次根式的性质与化简(共1小题)
    26.(2022•夏邑县模拟)实数﹣的倒数是( )
    A.B.C.D.
    二十.最简二次根式(共1小题)
    27.(2022•金山区二模)在下列二次根式中,最简二次根式的是( )
    A.B.C.D.
    二十一.二次根式的乘除法(共2小题)
    28.(2022•临沭县二模)下列运算正确的是( )
    A.B.
    C.D.(a﹣)2=a2﹣a
    29.(2022•太原二模)观察式子:=6,×=2×3=6;;=0.1;=0.1.由此猜想(a≥0,b≥0).上述探究过程蕴含的思想方法是( )
    A.特殊与一般B.类比C.转化D.公理化
    二十二.分母有理化(共1小题)
    30.(2022•信阳二模)下列式子运算正确的是( )
    A.6a÷3a=2aB.(2a)2=4a2
    C.=D.(x﹣y)(x+2y)=x2+2y2
    二十三.同类二次根式(共1小题)
    31.(2022•罗庄区一模)与是同类二次根式的是( )
    A.B.C.D.
    二十四.二次根式的加减法(共1小题)
    32.(2022•固安县模拟)下列计算正确的是( )
    A.B.a3•a2=a6C.=±3D.(2a2)3=8a6
    二十五.二次根式的混合运算(共2小题)
    33.(2022•邯郸模拟)老师设计了接力游戏,用合作的方式完成二次根式运算,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简,过程如图所示:
    接力中,自己负责的一步出现错误的是( )
    A.只有乙B.甲和丁C.乙和丙D.乙和丁
    34.(2022•北碚区校级模拟)某数学兴趣小组在学习二次根式的时候发现:有时候两个含有二次根式的代数式相乘,积不含有二次根式,例如:(﹣2)(+2)=1,•=a,(2﹣)(2+)=10,通过查阅相关资料发现,这样的两个代数式互为有理化因式.小组成员利用有理化因式,分别得到了一个结论:
    甲:;
    乙:设有理数a,b满足:,则a+b=6;
    丙:;
    丁:已知=4,则;
    戊:……+.
    以上结论正确的有( )
    A.甲丙丁B.甲丙戊C.甲乙戊D.乙丙丁
    二十六.二次根式的化简求值(共3小题)
    35.(2022•耿马县一模)若a=+3,b=3﹣,则的值为 .
    36.(2022•黄石模拟)已知一元二次方程2x2+5x+1=0的两个根是x1,x2,则x1+x2= ,x1x2= .
    (1)若实数m、n满足2m2+5m+1=0,2n2+5n+1=0,则的值是 ;
    (2)若实数s、t分别满足2s2+5s+1=0,t2+5t+2=0,且st≠1.求的值.
    37.(2022•丹棱县模拟)先化简.再从﹣1,0,1,2,中选择一个合适的x的值代入求值.
    二十七.二次根式的应用(共4小题)
    38.(2022•吴中区模拟)中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a、b、c,则三角形的面积S可由公式S=求得,其中p为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足a=3,b+c=5,则此三角形面积的最大值为( )
    A.B.3C.D.
    39.(2022•泰州二模)中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a、b、c,则三角形的面积可由公式S=求得,其中p为三角形周长的一半,这个公式也被称为海伦﹣秦九韶公式,现有一个三角形的边长满足c=3,a+b=5,则此三角形面积的最大值为 .
    40.(2022•新华区校级一模)矩形ABCD的长为,宽为,则这个长方形的周长为 ,面积为 .
    41.(2022•黄岛区一模)提出问题:
    在4×4的正方形方格纸上,各个小正方形的顶点称为格点,以格点为顶点的等腰直角三角形共有几个?
    问题探究:
    为了解决上面的问题,我们先从最简单的情形入手,从中找到解决问题的方法.
    探究一:
    如图1在1×1的正方形方格纸上,以格点为顶点的线段长度可取2个数值:1,,以这些线段组成的等腰直角三角形按三边长来考虑可以分为以下一种情况:1、1、.
    当斜边长为时,斜边一定是1×1正方形的对角线,这样的线段有2条,每条这样的线段对应着两个等腰直角三角形,共有2×2=4个.
    故在1×1的正方形方格纸上,以格点为顶点的等腰直角三角形的个数为4个.
    探究二:
    在2×2的正方形方格纸上,以格点为顶点的线段长度可取5个数值:1,2,,,.以这些线段组成的等腰直角三角形按三边长来考虑可以分为以下三种情况:1、1、;、、2;2、2、.
    (1)当斜边长为时,斜边一定是1×1正方形的对角线,这样的线段有8条,每条这样的线段对应着两个等腰直角三角形,共有8×2=16个.
    (2)当斜边长为2时,图形中长为2的线段有6条,其中有4条在2×2正方形的四周上,每条这样的线段对应着一个等腰直角三角形;另有2条在2×2正方形的内部,每条这样的线段对应着两个等腰直角三角形,共有4×1+2×2=8个.
    (3)当斜边长为时,斜边一定是2×2正方形的对角线,这样的线段有2条,每条这样的线段对应着两个等腰直角三角形,共有2×2=4个.
    故在2×2的正方形方格纸上,以格点为顶点的等腰直角三角形的个数为16+8+4=28个.
    探究三:
    如图2在3×3的正方形方格纸上,以格点为顶点的线段长度可取 个数值.以这些线段组成的等腰直角三角形按三边长来考虑可以分为以下五种情况:1、1、;、、2;2、2、;、、;3、3、.
    (1)当斜边长为时,斜边一定是1×1正方形的对角线,这样的线段有18条,每条这样的线段对应着两个等腰直角三角形,共有18×2=36个.
    (2)当斜边长为2时,图形中长为2的线段有16条,其中有 条在3×3正方形的四周上,每条这样的线段对应着一个等腰直角三角形;另有 条在3×3正方形的内部,每条这样的线段对应着两个等腰直角三角形,共有 个.
    (3)当斜边长为时,斜边一定是2×2正方形的对角线,这样的线段有8条,每条这样的线段对应着两个等腰直角三角形,共有8×2=16个.
    (4)当斜边长为时,图形中长为的线段有12条,其中有8条对应着一个等腰直角三角形;
    有4条对应着两个等腰直角三角形,共有8×1+4×2=16个.
    (5)当斜边长为时,斜边一定是3×3正方形的对角线,这样的线段有2条,每条这样的线段对应着两个等腰直角三角形,共有2×2=4个.
    故在3×3的正方形方格纸上,以格点为顶点的等腰直角三角形的个数为 个.
    问题解决:
    如图3在4×4的正方形方格纸上,以格点为顶点的等腰直角三角形的个数为 个.
    拓展延伸:
    如图4在2×2×1的长方体中,以格点为顶点(每个1×1×1小正方体的顶点均为格点),并且以等腰直角三角形为底面的直三棱柱的个数为 个.

    相关试卷

    中考数学二轮复习冲刺第05讲 一元二次方程、分式方程的解法及应用(14个考点)(知识精讲)(2份打包,原卷版+解析版):

    这是一份中考数学二轮复习冲刺第05讲 一元二次方程、分式方程的解法及应用(14个考点)(知识精讲)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第05讲一元二次方程分式方程的解法及应用14个考点知识精讲原卷版doc、中考数学二轮复习冲刺第05讲一元二次方程分式方程的解法及应用14个考点知识精讲解析版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    中考数学二轮复习冲刺第04讲 一次方程及方程组(23个考点)(知识精讲)(2份打包,原卷版+解析版):

    这是一份中考数学二轮复习冲刺第04讲 一次方程及方程组(23个考点)(知识精讲)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第04讲一次方程及方程组23个考点知识精讲原卷版doc、中考数学二轮复习冲刺第04讲一次方程及方程组23个考点知识精讲解析版doc等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    中考数学二轮复习冲刺第03讲 中考热点分式与二次根式【中考过关真题练】(2份打包,原卷版+解析版):

    这是一份中考数学二轮复习冲刺第03讲 中考热点分式与二次根式【中考过关真题练】(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第03讲中考热点分式与二次根式中考过关真题练原卷版doc、中考数学二轮复习冲刺第03讲中考热点分式与二次根式中考过关真题练解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学二轮复习冲刺第03讲 分式与二次根式(27个考点)(知识精讲)(2份打包,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map