- 中考数学二轮复习冲刺第03讲 中考热点分式与二次根式【中考过关真题练】(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习冲刺第04讲 一次方程及方程组(23个考点)(知识精讲)(2份打包,原卷版+解析版) 试卷 1 次下载
- 中考数学二轮复习冲刺第04讲 一次方程及方程组【中考过关真题练】(2份打包,原卷版+解析版) 试卷 1 次下载
- 中考数学二轮复习冲刺第05讲 一元二次方程、分式方程的解法及应用(14个考点)(知识精讲)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习冲刺第05讲 一元二次方程、分式方程的解法及应用【中考过关真题练】(2份打包,原卷版+解析版) 试卷 0 次下载
中考数学二轮复习冲刺第04讲 一次方程及方程组【挑战中考满分模拟练】(2份打包,原卷版+解析版)
展开1.(2022•沙市区模拟)对于某些用无限循环的形式表达的数可用方程的思想求解,例如,将无限循环小数0.化为分数,可以设0.=x,则10x=7+x,解得.仿此,实数的值为( )
A.B.2C.4D.﹣1或2
2.(2021•衡水模拟)定义一种新的运算:对于任意的有理数a,b,都有a⊗b=a+b,a⊕b=a﹣b,等式右边是通常的加法、减法运算,如a=2,b=1时,a⊗b=2+1=3,a⊕b=2﹣1=1.
(1)求(﹣2)⊗3+4⊕(﹣2)的值;
(2)化简:a2b⊗3ab+5a2b⊕4ab;
(3)若2x⊗1=﹣(x﹣2)⊕4,求x的值.
二.由实际问题抽象出一元一次方程(共3小题)
3.(2022•太平区一模)某工程甲单独完成要25天,乙单独完成要20天.若乙先单独干10天,剩下的由甲单独完成,设甲、乙一共用x天完成,则可列方程为( )
A.B.
C.D.
4.(2022•渝中区校级模拟)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑的快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程( )
A.240(x+12)=120xB.240(x﹣12)=120x
C.240x=120(x+12)D.240x=120(x﹣12)
5.(2022•武昌区模拟)有一道题:今有人共买羊,人出七,不足三;人出八,盈十六,问人数、羊价几何?译文为:现在有若干人共同买一头羊,若每人出7钱,则还差3钱;若每人出8钱,则剩余16钱.求买羊的人数和这头羊的价格?设买羊的人数为x人,根据题意,可列方程为( )
A.7x+3=8x+16B.7x﹣3=8x﹣16C.7x+3=8x﹣16D.7x﹣3=8x+16
三.一元一次方程的应用(共10小题)
6.(2022•开福区校级一模)某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款( )
A.288B.360C.288或316D.360或395
7.(2022•潍坊二模)潍坊出租车采用阶梯式的计价收费办法如表:
若某人一次乘车费用为26元,那么行驶里程为( )
A.13公里B.12公里C.11公里D.10公里
8.(2022•自贡模拟)欣欣服装店某天用相同的价格a(a≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )
A.亏损B.盈利C.不盈不亏D.不确定
9.(2022•丹江口市模拟)将正整数1至2016按一定规律排列如下:
平移表中带阴影的方框,方框中三个数的和可能是( )
A.2000B.2019C.2100D.2148
10.(2022•南川区模拟)夏天到了,体育中心为吸引顾客,在5月份的时候开设了一个夜市,分为运动体验区、物资补给区和休闲娱乐区,三者摊位数量之比为5:4:3,城管对每个摊位收取60元/月的管理费,到了6月份,由于顾客人数增加,该体育中心扩大夜市规模,并将新增摊位数量的用于运动体验区,结果运动体验区的摊位数占到了体育中心总摊位数量的,同时城管将运动体验区、物资补给区和休闲娱乐区每个摊位每月的管理费按50元、40元、30元收取,结果城管6月份收到的管理费比5月份增加了,则休闲娱乐区新增的摊位数量与该夜市6月的总摊位数量之比是 .
11.(2022•万州区校级一模)某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为 .
12.(2022•雁塔区校级模拟)某单位计划元旦组织员工到某地旅游,A、B两旅行社的服务质量相同,且到地的旅游价格都是每人300元,已知A旅行社表示可给每人七五折优惠,B旅行社可免去一人费用,其余八折优惠.当该单位旅游人数为多少时,支付A、B两旅行社的总费用相同?
13.(2022•苏州模拟)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.
14.(2022•砀山县模拟)为给同学们创造更好的读书条件,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格、大小相同的正方形地面砖搭配在一起,按如图所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.6m.
(1)按图示规律,第一图案的长度L1= m;第二个图案的长度L2= m.
(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln之间的关系.
(3)当走廊的长度L为36.6m时,请计算出所需带有花纹图案的瓷砖的块数.
15.(2022•丰泽区校级模拟)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.
注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.
根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000×(1﹣80%)+60=260(元).
(1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?
(2)若顾客在该商场购买一件标价x元(x>1250)的商品,那么该顾客获得的优惠额为多少?(用含有x的代数式表示)
(3)若顾客在该商场第一次购买一件标价x元(x>1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.
四.二元一次方程的应用(共4小题)
16.(2022•佳木斯模拟)春节前,小明用120元钱购买虎年吉祥物(两种都买),其中吉祥物挂件每件8元,吉祥物摆件每件12元,那么小明的购买方案有( )
A.3种B.4种C.5种D.6种
17.(2022•铁锋区三模)喜迎“二十大”,某校举办以“永远跟党走,奋进新征程”为主题的演讲比赛.计划用80元钱购买甲、乙两种笔记本作为奖品(钱全部用尽,两种笔记本都买),已知甲种笔记本每本8元,乙种笔记本每本12元,则购买方案共有( )
A.3种B.4种C.5种D.6种
18.(2022•高邮市模拟)小军在文具店购买了数支单价为1元/支的碳素水笔芯和若干块单价为1.5元/块的橡皮,共花费了9元,则小军购买的笔芯和橡皮的数量可能相差( )
A.2B.3C.4D.5
19.(2021•乐清市二模)目前我国新冠病毒疫情有很大好转,但是防疫不能放松,某物业公司向超市购买A、B、C三种型号的消毒湿巾分别分给第一周、第二周、第三周工作的员工使用,每人每周1包,这三周员工人数之和为100人,已知购买1包A型湿巾和2包B型湿巾共需要130元,购买2包A型湿巾和3包B型湿巾共需要220元,已知C型湿巾每包10元,第一周员工人数<第二周员工人数<第三周员工人数.
(1)求A型湿巾和B型湿巾的单价.
(2)该超市促销方案如下:每购买1包A型湿巾则赠送2包C型湿巾.
①若公司购买了第一周所需的A型湿巾后,赠送的C型湿巾刚好够第三周使用,求物业公司购买三种湿巾所需总金额的最小值.
②若第三周需要的C型湿巾除了赠送外,还需另外购买,最终三种湿巾总共花费了2560元,求所有满足要求的购买方案.
五.由实际问题抽象出二元一次方程组(共2小题)
20.(2022•如皋市一模)《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为( )
A.B.
C.D.
21.(2022•海曙区校级模拟)我国古代数学著作《增删算法统宗》中有这么一首诗:“今有布绢三十疋,共卖价钞五百七.四疋绢价九十贯,三疋布价该五十.欲问绢布各几何?价钞各该分端的.若人算得无差讹,堪把芳名题郡邑.”其大意是:今有绢与布30疋,卖得570贯钱,4疋绢价90贯,3疋布价50贯,欲问绢布有多少,分开把价算,若人算得无差错,你的名字城镇到处扬.设有绢x疋,布y疋,依据题意可列方程组为( )
A. B.
C. D.
六.二元一次方程组的应用(共16小题)
22.(2022•鼓楼区校级二模)《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,求有几个人及该物品的价格,用二元一次方程组解答该问题,若已经列出一个方程7x+4=y,则符合题意的另一个方程是( )
A.8x﹣3=yB.8x+3=yC.D.
23.(2022•义乌市模拟)某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元B.155元,200元
C.100元,120元D.150元,125元
24.(2022•石家庄三模)《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程8x﹣3=y,则符合题意的另一个方程是( )
A.7x﹣4=yB.7x+4=yC.+4=xD.﹣4=x
25.(2022•渝中区校级模拟)某饮料厂生产的一款热卖饮料是由冰糖水、红茶水、草莓汁、纯牛奶四种原料按一定质量比配制而成.3月份,该款饮料中冰糖水与红茶水的质量比为3:2,草莓汁与纯牛奶的质量比为2:1:草莓汁每千克的进价是红茶水每千克进价的2倍,纯牛奶每千克的进价是冰糖水每千克进价的3倍.4月份,根据市场反应,该饮料厂改变配比推出了新款饮料,在3月份的基础上,红茶水和草莓汁的质量均增加,冰糖水的质量减少,纯牛奶的质量不变;草莓汁每千克的进价下降50%,纯牛奶每千克的进价上涨,其余原料每千克的进价不变,结果新款饮料的总成本比3月份推出的老款饮料的总成本多154元(饮料总成本为各种原料的成本之和),两款饮料红茶水与草莓汁的成本之和比两款饮料冰糖水和纯牛奶的成本之和多1106元,那么老款饮料与新款饮料中四种原料质量之和的比为 .
26.(2022•泗阳县一模)2022年2月4日,第24届冬季奥林匹克运动会在北京胜利召开,在冬奥会期间,北京某校打算组织部分师生利用周日时间到现场观看比赛,经了解在离学校最近的比赛场馆当日共有A、B两场比赛,两场比赛的票价如下图所示,其中x轴表示一次性购票人数,y轴表示每张票的价格,如:一次性购买A场比赛门票10张,票价为400元/张,若一次性购买A场比赛门票80张,则每张票价为200元.
(1)若一次性购买B场比赛门票10张,则每张票价为 元(直接写出结果).
(2)若一次性购买A场比赛门票a(50<a<60)张,需支付门票费用多少元?(用a的代数式表示)
(3)该校共组织120人(每人购买一张门票)分两组分别观看A、B两场比赛,共花费32160元,若观看A场比赛的人数不足50人,则有多少人观看了B场比赛?
27.(2022•海珠区二模)火车站北广场将于2016年底投入使用,计划在广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A、B两种花木的数量分别是多少棵?
(2)如果园林处安排25人同时种植这两种花木,每人每天能种植A花木70棵或B花木60棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
28.(2022•澄迈县模拟)有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克?
29.(2021•永嘉县校级模拟)某蔬菜基地打算将115吨的蔬菜运往县城销售,现找到一物流公司有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示(假设每辆车均满载,并且每种车型数量足够):
(1)若全部蔬菜都用甲、乙两种车型来运送,需运费7800元,问分别需甲、乙两种车型各几辆?
(2)蔬菜基地计划用甲、乙、丙三种车型共15辆同时参与运送,将全部蔬菜运往县城销售,如何安排装运,可使运费最省?最省运费是多少?
30.(2021•商河县一模)某市火车站北广场将于2016年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
31.(2021•奎屯市三模)有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?
32.(2020•南康区模拟)南康是中部家具产业基地,某家具厂接到订单要生产如图所示的正三棱柱家具配件6000个,每个配件由3个矩形侧面和2个等边三角形底面组成.仓库现有甲、乙两种规格的木板共2600张,其中甲种木板刚好可以裁出4个侧面,乙种木板可以裁出3个底面和2个侧面.(裁剪后边角料不再利用,拼接材料忽略不计)
(1)若裁出的侧面和底面恰好全部用完,问两种木板各有多少张?
(2)仓库的这些木板是否能满足这批订单的需要?如果能,请求出还可剩余甲、乙木板各多少张;如果不能,那么至少还需要甲、乙木板各多少张才能生产出这批订单.
33.(2020•宁波模拟)有16张全等的矩形卡纸.其中8张恰好拼成如图1的大矩形,其余8张可拼成如图2的正方形,中间还留下了一个洞,恰好是边长为8cm的小正方形.用这16张卡纸做三棱柱盒子,每个三棱柱盒子由3个矩形侧面和2个正三角形底面组成,每张卡纸用图3或图4所示方法裁剪(裁剪后边角料不再利用).
A方法:剪5个侧面;
B方法:剪3个侧面和10个底面.
(1)求每张卡纸的长和宽.
(2)若裁剪出的侧面和底面恰好全部用完,16张卡纸是否能满足这个要求?若能满足,求所做的三棱柱盒子的个数;若不能满足,则至少要增加多少张卡纸,才能满足要求?请说明你的理由.
(3)在满足(2)要求的前提下,要给所做的三棱柱盒子表面涂色,直接写出涂色部分的总面积.
34.(2020•运城模拟)某市园林局准备种植A种花木4200棵,B种花木2400棵.现计划安排26人同时种植这两种花木,已知每人每天能种植A种花木30棵或B种花木20棵,则应分别安排多少人种植这两种花木,才能确保同时完成各自的任务?
35.(2021•阿城区一模)一汽车销售商店经销A,B两种型号轿车,用400万元购进A型轿车10辆和B型轿车20辆;用300万元可以购进A型轿车9辆,B型轿车14辆.
(1)求A型、B型轿车每辆进价分别为多少万元?
(2)若该汽车销售商店购进A、B两种型号的轿车共60辆,且购车资金不超过700万元,该汽车销售商店至少购进A型轿车几辆?
36.(2021•襄阳模拟)文昌某校准备组织学生及学生家长到三亚进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,文昌到三亚的火车票价格(部分)如下表所示:
(1)参加社会实践的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.
(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?
37.(2021•湖北模拟)某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.
(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;
(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?
(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.
七.三元一次方程组的应用(共4小题)
38.(2022•重庆模拟)某水果店售卖A,B,C,D四种水果套餐,其中A,B两种水果的单价相同,D种水果的单价是C种水果单价的7倍,第一天,A,C两种水果的销量相同,B种水果的销量是D种水果销量的7倍,结果第一天A,B两种水果的总销售额比C、D两种水果的总销售额多126元,且四种水果第一天的单价与销量均为正整数,到了第二天的时候,由于D种水果不易保存,摊主便将D种水果打八折售卖,其他三种水果单价不变,结果第二天除了B种水果销量下降了20%,其他几种水果的销量跟第一天一样,若A种水果与C种水果的单价之差超过6元但不超过13元,B种水果和D种水果第一天的单价之和不超过35元,则第二天四种水果总销售额最多为 元.
39.(2020•渝中区校级一模)受新冠疫情影响,学校复学后为尽量减少学生排队打饭的时间,决定采取班级统一预订,学生即领即走的方式,餐费在晚餐后按实际用餐情况进行结算.食堂提供了6元三明治、12元盒饭和15元盒饭三种选择.某班根据同学预订情况,将本班同学分成3组,A组:午餐晚餐都吃12元盒饭,B组:午餐晚餐都吃15元盒饭,C组:午餐吃15元,晚餐吃12元盒饭,预计一天的餐费是1449元.第一天午餐时,B组有一名同学自带了午餐,A组有一名同学正好没吃饱,就吃了B组同学的那份午餐;晚餐时,C组有部分同学除了预订的晚餐,还每人买了1份三明治;当天统计后发现三个组的实际餐费正好一样多,若C组人数不少于14人,则该班的总人数是 人.
40.(2022•沙坪坝区校级一模)冬季运动越野滑雪的路段分为上坡、平地、下坡三种类型,滑雪者在同种路段中滑行速度保持不变.运动爱好者小明上坡滑雪3分钟与平地滑雪2分钟的路程相等.第一次训练中,他上坡、平地、下坡滑雪的时间分别是2分钟、2分钟、3分钟.第二次训练中,他上坡、平地、下坡滑雪的时间分别比第一次多了50%、50%、20%,总路程比第一次多32%.第三次训练所用时间为第一次的3倍,其中上坡、平地、下坡滑雪的时间依次减少,且总路程是第二次的2倍.设第三次训练中平地滑雪时间为b分钟,若b为整数,则b的值为 .
41.(2021•万州区模拟)为迎接“五•一节”的到来,某水果店推出了A、B、C三类礼包,已知这三类礼包均由苹果、芒果、草莓三种水果搭配而成,每袋礼包的成本均为苹果、芒果、草莓三种水果成本之和.每袋A类礼包有5斤苹果、2斤芒果、8斤草莓;每袋C类礼包有7斤苹果、1斤芒果、4斤草莓.已知每袋A的成本是该袋中苹果成本的3倍,利润率为30%,每袋B的成本是其售价的,利润是每袋A利润的;每袋C礼包利润率为25%.若该网店12月12日当天销售A、B、C三种礼包袋数之比为4:6:5,则当天该水果店销售总利润率为 .
行驶里程
计费方法
不超过3公里
起步价8元
超过3公里且不超过7公里的部分
每公里按标准租费收费
超过7公里且不超过25公里的部分
每公里再加收标准租费的50%
超过25公里且不超过100公里的部分
每公里再加收标准租费的75%
超过100公里的部分
每公里再加收标准租费的100%
说明:行驶里程不足1公里,按1公里计算;
行驶里程超过3公里时的标准租费为1.8元/公里.
消费金额(元)
小于或等于500元
500~1000
1000~1500
1500以上
返还金额(元)
0
60
100
150
车型
甲
乙
丙
汽车运载量(吨/辆)
5
8
10
汽车运费(元/辆)
400
500
600
运行区间
公布票价
学生票价
上车站
下车站
一等座
二等座
二等座
文昌
三亚
81(元)
68(元)
51(元)
中考数学二轮复习冲刺第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】(2份打包,原卷版+解析版): 这是一份中考数学二轮复习冲刺第05讲一元二次方程、分式方程的解法及应用【挑战中考满分模拟练】(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第05讲一元二次方程分式方程的解法及应用挑战中考满分模拟练原卷版doc、中考数学二轮复习冲刺第05讲一元二次方程分式方程的解法及应用挑战中考满分模拟练解析版doc等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
中考数学二轮复习冲刺第04讲 一次方程及方程组(23个考点)(知识精讲)(2份打包,原卷版+解析版): 这是一份中考数学二轮复习冲刺第04讲 一次方程及方程组(23个考点)(知识精讲)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第04讲一次方程及方程组23个考点知识精讲原卷版doc、中考数学二轮复习冲刺第04讲一次方程及方程组23个考点知识精讲解析版doc等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
中考数学二轮复习冲刺第03讲 中考热点分式与二次根式【挑战中考满分模拟练】(2份打包,原卷版+解析版): 这是一份中考数学二轮复习冲刺第03讲 中考热点分式与二次根式【挑战中考满分模拟练】(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第03讲中考热点分式与二次根式挑战中考满分模拟练原卷版doc、中考数学二轮复习冲刺第03讲中考热点分式与二次根式挑战中考满分模拟练解析版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。