|试卷下载
终身会员
搜索
    上传资料 赚现金
    模拟汇总广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解)
    立即下载
    加入资料篮
    模拟汇总广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解)01
    模拟汇总广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解)02
    模拟汇总广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟汇总广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解)

    展开
    这是一份模拟汇总广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解),共30页。试卷主要包含了下列各式中,不是代数式的是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、有理数 m、n 在数轴上的位置如图,则(m+n)(m+2n)(m﹣n)的结果的为( )
    A.大于 0B.小于 0C.等于 0D.不确定
    2、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
    A.16B.19C.24D.36
    3、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
    A.24B.27C.32D.36
    4、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
    A.B.C.D.
    5、下列各式中,不是代数式的是( )
    A.5ab2B.2x+1=7C.0D.4a﹣b
    6、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
    A.1B.2020C.2021D.2022
    7、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.不确定
    8、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
    A.19°B.20°C.24°D.25°
    9、下列图像中表示是的函数的有几个( )
    A.1个B.2个C.3个D.4个
    10、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
    A.30km/hB.60km/hC.70km/hD.90km/h
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
    (1)当四边形APQD是矩形时,t的值为______.
    (2)当四边形APCQ是菱形时,t的值为______.
    (3)当是等腰三角形时,t的值为______.
    2、观察下列图形,它们是按一定规律排列的,按此规律,第2022个图形中“○”的个数为______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、如图,在中,BC的垂直平分线MN交AB于点D,若,,P是直线MN上的任意一点,则的最小值是______.
    4、如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为______.
    5、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
    三、解答题(5小题,每小题10分,共计50分)
    1、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
    (1)这两种玻璃保温杯各购进多少个?
    (2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
    2、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
    求证:
    (1);
    (2).
    3、如图,,,且,,求A点的坐标.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、解方程:
    (1);
    (2)
    5、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
    (1)当点 在边 上时,
    ① 求证: ;
    ②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
    (2)联结 , 如果 , 求 的值.
    -参考答案-
    一、单选题
    1、A
    【分析】
    从数轴上看出,判断出,进而判断的正负.
    【详解】
    解:由题意知:


    故选A.
    【点睛】
    本题考查了有理数加减的代数式正负的判断.解题的关键在于正确判断各代数式的正负.
    2、C
    【分析】
    分别求出各视图的面积,故可求出表面积.
    【详解】
    由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
    故表面积为2×(4+3+5)=24
    故选C.
    【点睛】
    此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
    3、C
    【分析】
    利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
    【详解】
    解:∵AD=DE,S△BDE=96,
    ∴S△ABD=S△BDE=96,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
    ∵AD平分∠BAC,
    ∴DG=DF,
    ∴△ACD与△ABD的高相等,
    又∵AB=3AC,
    ∴S△ACD=S△ABD=.
    故选:C.
    【点睛】
    本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
    4、D
    【分析】
    根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
    【详解】
    解:在Rt△ABC中,AB=,
    ∴点B所走过的路径长为=
    故选D.
    【点睛】
    本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
    5、B
    【分析】
    根据代数式的定义即可判定.
    【详解】
    A. 5ab2是代数式;
    B. 2x+1=7是方程,故错误;
    C. 0是代数式;
    D. 4a﹣b是代数式;
    故选B.
    【点睛】
    此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
    6、D
    【分析】
    根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:如图,
    由题意得:SA=1,
    由勾股定理得:SB+SC=1,
    则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
    同理可得:
    “生长”了2次后形成的图形中所有的正方形面积和为3,
    “生长”了3次后形成的图形中所有正方形的面积和为4,
    ……
    “生长”了2021次后形成的图形中所有的正方形的面积和是2022,
    故选:D
    【点睛】
    本题考查了勾股数规律问题,找到规律是解题的关键.
    7、C
    【分析】
    根据公式,得=,=,判断选择即可.
    【详解】
    ∵=,=,
    ∴=.
    故选C.
    【点睛】
    本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
    8、B
    【分析】
    根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
    【详解】
    ∵BD的垂直平分线交AB于点E,



    ∵将沿AD折叠,点C恰好与点E重合,
    ∴,,




    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    故选:B.
    【点睛】
    本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
    9、A
    【分析】
    函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
    【详解】
    解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
    故第2个图符合题意,其它均不符合,
    故选:A.
    【点睛】
    本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
    10、B
    【分析】
    直接观察图象可得出结果.
    【详解】
    解:根据函数图象可知:t=1时,y=90;
    ∵汽车是从距离某城市30km开始行驶的,
    ∴该汽车行驶的速度为90-30=60km/h,
    故选:B.
    【点睛】
    本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
    二、填空题
    1、 4 或5或4
    【解析】
    【分析】
    (1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
    (2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
    (3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
    【详解】
    解:(1)由题意得AP=CQ=t,
    ∵在矩形ABCD中,cm,cm.
    ∴CD=cm,,
    ∴DQ=(8-t)cm,
    当四边形APQD是矩形时,AP=DQ,
    ∴t=8-t,
    解得t=4,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故答案为:4;
    (2)连接PC,
    ∵四边形APCQ是菱形,
    ∴AP=PC=tcm,PB=(8-t)cm,
    ∵在矩形ABCD中,∠B=90°,
    ∴,
    ∴,
    解得,
    故答案为:;
    (3)∵∠B=90°,cm,cm.
    ∴AC=10cm,
    ∵,
    ∴∠OAP=∠OCQ,∠OPA=∠OQC,
    ∴△OAP≌△OCQ,
    ∴OA=OC=5cm,
    分三种情况:
    当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
    ∵∠NAP=∠BAC,∠ANP=∠B,
    ∴△NAP∽△BAC,
    ∴,
    ∴,
    解得t=;
    当AP=AO=5cm时,t=5;
    当OP=AO=5cm时,过点O作OG⊥AB于G,则,
    ∵∠OAG=∠BAC,∠OGA=∠B,
    ∴△OAG∽△CAB,
    ∴,
    ∴,
    解得t=4,
    故答案为:或5或4.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
    2、6067
    【解析】
    【分析】
    设第n个图形共有an个○(n为正整数),观察图形,根据各图形中○个数的变化可找出变化规律“an=3n+1(n为正整数)”,依此规律即可得出结论.
    【详解】
    解:设第n个图形共有an个○(n为正整数).
    观察图形,可知:a1=4=3+1=3×1+1,a2=7=6+1=3×2+1,a3=10=9+1=3×3+1,a4=13=12+1=3×4+1,…,
    ∴an=3n+1(n为正整数),
    ∴a2022=3×2022+1=6067.
    故答案为6067.
    【点睛】
    本题考查了规律型:图形的变化类,根据各图形中○个数的变化找出变化规律“an=3n+1(n为正整数)”是解题的关键.
    3、8
    【解析】
    【分析】
    如图,连接PB.利用线段的垂直平分线的性质,可知PC=PB,推出PA+PC=PA+PB≥AB,即可解决问题.
    【详解】
    解:如图,连接PB.
    ∵MN垂直平分线段BC,
    ∴PC=PB,
    ∴PA+PC=PA+PB,
    ∵PA+PB≥AB=BD+DA=5+3=8,
    ∴PA+PC≥8,
    ∴PA+PC的最小值为8.
    故答案为:8.
    【点睛】
    本题考查轴对称﹣最短问题,线段的垂直平分线的性质等知识,解题的关键是学会利用两点之间线段最短解决最短问题,属于中考常考题型.
    4、(-,1)
    【解析】
    【分析】
    首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=,继而求得答案.
    【详解】
    解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    则∠ODC=∠AEO=90°,
    ∴∠OCD+∠COD=90°,
    ∵四边形OABC是正方形,
    ∴OC=OA,∠AOC=90°,
    ∴∠COD+∠AOE=90°,
    ∴∠OCD=∠AOE,
    在△AOE和△OCD中,

    ∴△AOE≌△OCD(AAS),
    ∴CD=OE=1,OD=AE=,
    ∴点C的坐标为:(-,1).
    故答案为:(-,1).
    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.
    5、
    【解析】
    【分析】
    首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
    【详解】
    解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
    故答案为:.
    【点睛】
    此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
    三、解答题
    1、
    (1)购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    (2)该商店共获利530元
    【分析】
    (1)设购进A型玻璃保温杯x个,根据购进两个型号玻璃保温杯的总价钱是3700元列方程求解即可;
    (2)根据单件利润=售价-进价和总利润=单件利润×销量求解即可.
    (1)
    解:设购进A型玻璃保温杯x个,则购进B型玻璃保温杯(80-x)个,
    根据题意,得:35x+65(80-x)=3700,
    解得:x=50,
    80-x=80-50=30(个),
    答:购进A型玻璃保温杯50个,购进B型玻璃保温杯30个;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    解:根据题意,总利润为
    (50×0.8-35)×(50-2)+(100×0.75-65)×(30-1)
    =240+290
    =530(元),
    答:该商店共获利530元.
    【点睛】
    本题考查一元一次方程的应用、有理数混合运算的应用,理解题意,找准等量关系,正确列出方程和算式是解答的关键.
    2、
    (1)见解析
    (2)见解析
    【分析】
    (1)利用已知条件证明即可;
    (2)通过证明得出,再根据,得出结论.
    (1)
    证明:,,






    (2)
    证明,点是边上的中点,
    ,,










    即.
    【点睛】
    本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
    3、A点的坐标为(,)
    【分析】
    根据题意作AM⊥x轴于M,BN⊥AM于N.只要证明△ABN≌△CAM(AAS),即可推出AM=BN,AN=CM,设· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    OM=a,则CM=5-a,BN=AM=3+a,根据MN=AM-AN,列出方程即可解决问题.
    【详解】
    解:作AM⊥x轴于M,BN⊥AM于N,
    ∵∠BAC=90°,
    ∴∠MAB+∠CAN=90°,
    ∵∠MAB+∠ABN=90°,
    ∴∠ABN=∠CAM,
    在△ABN和△CAM中,

    ∴△ABN≌△CAM(AAS),
    ∴AM=BN,AN=CM,
    ∵,,
    设OM=a,则CM=5-a,BN=AM=3+a,
    ∴MN=AM-AN,
    5=3+a-(5-a),
    ∴a=,
    ∴OM=,AM=,
    ∴A点的坐标为(,).
    【点睛】
    本题考查全等三角形的判定和性质以及平面直角坐标系点的特征,正确作出辅助线构建全等三角形是解题的关键.
    4、
    (1)x= ;
    (2)x=
    【分析】
    (1)根据解一元一次方程的方法求解即可;
    (2)根据解一元一次方程的方法求解即可.
    (1)
    解:去括号,得:6-9x=x+1,
    移项、合并同类项,得:-10x=-5,
    化系数为1,得:x= ;
    (2)
    解:去分母,得:2(2x+1)=6+(1-3x),
    去括号,得:4x+2=6+1-3x,
    移项、合并同类项,得:7x=5,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    化系数为1,得:x= ;
    【点睛】
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    5、
    (1)①见解析;②
    (2)3或4
    【分析】
    (1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
    ②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
    (2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
    (1)
    ① 如图1,连接CE,DE,
    ∵点B关于直线CD的对称点为点E,
    ∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
    ∵AC=BC,
    ∴AC=EC,
    ∴∠AEC=∠ACE,
    ∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
    ∴∠AEC=45°+∠ECD,
    ∵∠AEC=∠AFC +∠ECD,
    ∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
    ∴∠AFC=45°;
    ②连接BE,交CD于定Q,
    根据①得∠EAB =∠DCB,∠AFC=45°,
    ∵点B关于直线CD的对称点为点E,
    ∴∠EFC=∠BFC=45°,CF⊥BE,
    ∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
    ∵∠BEG>∠EAB,与 相似,
    ∴△DCB∽△BGE,
    ∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
    ∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
    ∴∠EAB=∠EBA=∠BGE,
    ∴AE=BE=BF=EF,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵BF⊥AG,
    ∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
    ∴GE=EF+FG=BE+BE= BE,
    ∴=,
    ∵△DCB∽△BGE,
    ∴,
    ∴,
    ∴BD==,
    (2)
    过点C作CM⊥AE,垂足为M,
    根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
    ∴AM=ME,BF⊥AF,
    设AM=ME=x,CM=y,
    ∵AC=BC=5,∠ACB=90°,,
    ∴,AB=,xy=12,

    ==49,
    ∴x+y=7或x+y=-7(舍去);

    ==1,
    ∴x-y=1或x-y=-1;
    ∴或
    ∴或
    ∴或
    ∴AE=8或AE=6,
    当点D在AB上时,如图3所示,AE=6,
    设BF=EF=m,
    ∴,
    ∴,
    解得m=1,m=-7(舍去),
    ∴=3;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当点D在AB的延长线上时,如图4所示,AE=8,
    设BF=EF=n,
    ∴,
    ∴,
    解得n=1,n=7(舍去),
    ∴=4;
    ∴或.
    【点睛】
    本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形的相似,一元二次方程的解法是解题的关键.
    价格\类型
    A型
    B型
    进价(元/个)
    35
    65
    标价(元/个)
    50
    100
    相关试卷

    中考数学广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解): 这是一份中考数学广西来宾市中考数学五年真题汇总 卷(Ⅲ)(含答案及详解),共23页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。

    【真题汇总卷】广西来宾市中考数学模拟专项测评 A卷(含答案解析): 这是一份【真题汇总卷】广西来宾市中考数学模拟专项测评 A卷(含答案解析),共27页。试卷主要包含了如图,E,下列方程中,解为的方程是等内容,欢迎下载使用。

    备考练习广西来宾市中考数学三年高频真题汇总 卷(Ⅰ)(含详解): 这是一份备考练习广西来宾市中考数学三年高频真题汇总 卷(Ⅰ)(含详解),共39页。试卷主要包含了不等式的最小整数解是,如图,A,如图个三角形.,有理数 m等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map