高考数学专题练 专题三 微专题23 数列求和(含答案)
展开
这是一份高考数学专题练 专题三 微专题23 数列求和(含答案),共12页。
典例1 (2023·厦门模拟)记等差数列{an}的公差为d,前n项和为Sn;等比数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的公比为q,前n项和为Tn,已知b3=4a1,S4=b3+6,T3=7a1.
(1)求d和q;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若a1=1,q>0,cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(-anbn+1,n为奇数,,anbn,n为偶数,))
求eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前2n项和.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
典例2 (2023·郑州模拟)已知数列{an}满足n(an+1-an)=2an,a1=2,n∈N*.
(1)求数列{an}的通项公式;
(2)若bn=eq \f(n+12,anan+1),Tn为数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前n项和,求Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
典例3 (2023·全国甲卷)记Sn为数列{an}的前n项和,已知a2=1,2Sn=nan.
(1)求{an}的通项公式;
(2)求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an+1,2n)))的前n项和Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[总结提升]
1.分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差.
2.裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.
3.错位相减法求和,主要用于求{anbn}的前n项和,其中{an},{bn}分别为等差数列和等比数列.
1.(2023·益阳质检)数列{an}的前n项和为Sn,已知a1=1,a2=3,当n≥2时,Sn+1+Sn-1=2Sn+n+1.
(1)求数列{an}的通项公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)设bn=(-1)n·an,求eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前2m(m∈N*)项和T2m.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·贵阳模拟)已知数列{an}和{bn}满足:a1=1,b1=2,an+1=eq \f(2,3)an+eq \f(1,3)bn,bn+1=eq \f(2,3)bn+eq \f(1,3)an,其中n∈N*.
(1)求证:an+1-an=eq \f(1,3n);
(2)求数列{an}的前n项和Sn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
3.(2023·眉山模拟)已知数列{an}是公差为2的等差数列,其前3项的和为12,{bn}是公比大于0的等比数列,b1=3,b3-b2=18.
(1)求数列{an}和{bn}的通项公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若数列{cn}满足cn=eq \f(4,anan+1)+bn,求{cn}的前n项和Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
4.(2023·株洲模拟)数列{an}满足a1=3,an+1-aeq \\al(2,n)=2an.
(1)若=an+1,求证:eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))是等比数列;
(2)若cn=eq \f(n,bn)+1,eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前n项和为Tn,求满足Tn0时,q=2,则b1=a1=1,所以an=n,bn=2n-1,
所以cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(-n·2n,n为奇数,,n·2n-1,n为偶数,))
c2n-1+c2n=-(2n-1)·22n-1+2n·22n-1=22n-1,
所以eq \b\lc\{\rc\}(\a\vs4\al\c1(cn))的前2n项和为c1+c2+c3+c4+…+c2n-1+c2n
=(c1+c2)+(c3+c4)+…+(c2n-1+c2n)
=2+23+25+…+22n-1 =eq \f(21-4n,1-4)=eq \f(2,3)(4n-1).
跟踪训练1 已知数列{an}的前n项和为Sn,a1=2,an+1=Sn+2.
(1)求数列{an}的通项公式;
(2)若数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))满足bn=an+lg2a2n+1,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前n项和Tn.
解 (1)∵an+1=Sn+2,
∴an=Sn-1+2(n≥2),
两式相减得an+1-an=an,即an+1=2an(n≥2),
又a1=2,a2=S1+2=4,∴eq \f(a2,a1)=2,
∴eq \f(an+1,an)=2(n∈N*),
∴{an}是以2为首项,2为公比的等比数列,
∴an=2·2n-1=2n.
(2)由(1)得an=2n,
则bn=an+lg2a2n+1=2n+lg222n+1=2n+2n+1,
∴Tn=b1+b2+b3+…+bn
=(2+3)+(22+5)+…+(2n+2n+1)
=(2+22+…+2n)+(3+5+…+2n+1)
=eq \f(21-2n,1-2)+eq \f(n3+2n+1,2)=2n+1+n2+2n-2.
考点二 裂项相消法
典例2 (2023·郑州模拟)已知数列{an}满足n(an+1-an)=2an,a1=2,n∈N*.
(1)求数列{an}的通项公式;
(2)若bn=eq \f(n+12,anan+1),Tn为数列eq \b\lc\{\rc\}(\a\vs4\al\c1(bn))的前n项和,求Tn.
解 (1)∵n(an+1-an)=2an,
∴nan+1=(n+2)an,
∴eq \f(an+1,an)=eq \f(n+2,n),则eq \f(a2,a1)=eq \f(3,1),eq \f(a3,a2)=eq \f(4,2),eq \f(a4,a3)=eq \f(5,3),…,eq \f(an-1,an-2)=eq \f(n,n-2),eq \f(an,an-1)=eq \f(n+1,n-1),
利用累乘法可得,eq \f(an,a1)=eq \f(nn+1,1×2),
∴an=n(n+1).
(2)根据题意bn=eq \f(n+12,anan+1)=eq \f(n+12,nn+1n+1n+2)=eq \f(1,nn+2)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+2))),
∴Tn=eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)+\f(1,2)-\f(1,4)+\f(1,3)-\f(1,5)+…+\f(1,n-1) -\f(1,n+1)+\f(1,n)-\f(1,n+2)))
=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)-\f(1,n+1)-\f(1,n+2)))=eq \f(3,4)-eq \f(2n+3,2n+1n+2).
跟踪训练2 (2023·六安模拟)已知Sn是数列{an}的前n项和,且Sn=2n+1-1(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=eq \f(2n+1,an-1an+1-1),Tn是{bn}的前n项和,证明:Tn
相关试卷
这是一份高考数学专题练 专题三 微专题21 等差数列、等比数列(含答案),共17页。
这是一份高考数学专题练 专题三 微专题24 数列的奇偶项、增减项问题(含答案),共13页。
这是一份新高考数学一轮复习微专题专练32数列求和(含详解),共5页。