高考数学专题练 专题三 微专题22 数列的递推关系(含答案)
展开
这是一份高考数学专题练 专题三 微专题22 数列的递推关系(含答案),共18页。
典例1 (1)已知数列{an}中,a1=3,an+1=2an+1,则an=________.
(2)已知数列{an}中,a1=1,an+1=2an+3n,则an=________.
典例2 (2023·潍坊模拟)已知Sn是数列{an}的前n项和,且a1=a2=1,an=2an-1+3an-2(n≥3),则下列结论正确的是( )
A.数列{an-an+1}为等比数列
B.数列{an+1+2an}为等比数列
C.S40=eq \f(1,4)(320-1)
D.an=eq \f(3n-1+-1n-1,2)
典例3 若a1>0,a1≠1,an+1=eq \f(2an,1+an),n∈N*.
(1)求证:an+1≠an;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)令a1=eq \f(1,2),写出a2,a3,a4,a5的值,并求出这个数列的通项公式an.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[总结提升]
1.形如an+1=eq \f(pan,ran+s)(p,r,s为常数)的类型,可通过两边同时取倒数的方法构造新数列求解.
2.形如an+1=pan+An+B(p,A,B为常数)的类型,可令an+1+λ(n+1)+μ=p(an+λn+μ),求出λ,μ的值即可知{an+λn+μ}为等比数列,进而可求an.
3.形如an+1=pan+Aqn(p,A为常数)的类型,当p≠q时,可令an+1+λqn+1=p(an+λqn),求出λ的值即可知{an+λqn}是等比数列,进而可求an,当p=q时可化为eq \f(an+1,qn)=eq \f(an,qn-1)+A,即eq \f(an+1,qn)-eq \f(an,qn-1)=A(常数)知eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,qn-1)))为等差数列,进而可求an.
4.形如an+1=pan+qan-1的类型,转化为an+1+λan=p(an+λan-1)的类型.求出λ,p的值,可知{an+λan-1}是等差数列还是等比数列,进而可求an.
1.(2023·南京模拟)如图所示的三角形图案是谢尔宾斯基三角形.已知第n个图案中黑色与白色三角形的个数之和为an,数列{an}满足a1=1,an+1=3an+1(n≥1),那么下面各数中是数列{an}中的项的是( )
A.121 B.122 C.123 D.124
2.(2023·南京模拟)在数列{an}中,a1=7,a2=24,对所有的正整数n都有an+1=an+an+2,则a2 024等于( )
A.-7 B.24 C.-13 D.25
3.(2023·南充模拟)已知数列{an}中,a1=2,an+1=eq \f(2an,an+2)(n∈N*),则数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n+1)))的前10项和S10等于( )
A.eq \f(16,11) B.eq \f(18,11) C.eq \f(20,11) D.2
4.若Sn是数列{an}的前n项和,已知a1=2,a2=10,且Sn+1+2Sn-1-3Sn=2×3n,则S2 022等于( )
A.32 023-22 024+1 B.32 022-22 023+1
C.2·32 022-22 023 D.2·32 023-22 024
5.(多选)(2023·郑州模拟)数列{an}满足a1=-21,a2=-12,an+1+an-1=2an-2(n≥2),Sn是{an}的前n项和,则下列说法正确的是( )
A.eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n-8)))是等差数列
B.an=-n2+12n+32
C.a6是数列{an}的最大项
D.对于任意正整数m,n(n>m),Sn-Sm的最大值为10
6.(多选)(2023·岳阳模拟)设首项为1的数列{an}的前n项和为Sn,若Sn+1=2Sn+n-1(n∈N*),则下列结论正确的是( )
A.数列{Sn+n}为等比数列
B.数列{an}的通项公式为an=2n-1-1
C.数列{an+1}为等比数列
D.数列{2Sn}的前n项和为2n+2-n2-n-4
7.已知a1=1,当n≥2时,an=eq \f(1,2)an-1+2n-1,则{an}的通项公式为________.
8.在数列{an}中,若a1=1,a2=4,an+2+2an=3an+1,则数列{an}的通项公式为____________.
9.(2023·泉州模拟)设数列{an}满足a1=3,an=2an-1-n+2(n≥2).
(1)证明:数列{an-n}为等比数列,并求数列{an}的通项公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)数列{bn}满足an=2nbn,求b1+b2+b3+…+bn的值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
10.(2023·朝阳模拟)已知数列{an}的前n项和为Sn=eq \f(n,n+1)(n∈N*),数列{bn}满足b1=1,且bn+1=eq \f(bn,bn+2)(n∈N*).
(1)求数列{an}的通项公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)求数列{bn}的通项公式;
(3)对于n∈N*,试比较bn+1与an的大小.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
微专题22 数列的递推关系
[考情分析] 数列的通项公式求法是高考数学的必考考点,通常在选择题、填空题与解答题第一问中考查.难度中等,但有时在同一个题目中会涉及多种方法,综合性较强.
考点一 形如an+1=pan+f(n)型
典例1 (1)已知数列{an}中,a1=3,an+1=2an+1,则an=________.
答案 2n+1-1
解析 由题意知an+1=2an+1,在等式两边同时加1得an+1+1=2an+2=2(an+1),
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(an+1))是首项为a1+1=4,公比为2的等比数列.
∴an+1=4·2n-1=2n+1,
∴an=2n+1-1.
(2)已知数列{an}中,a1=1,an+1=2an+3n,则an=________.
答案 3n-2n
解析 方法一 由题意知an+1=2an+3n,在等式两边同时除以2n得eq \f(an+1,2n)=eq \f(an,2n-1)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n,
令bn=eq \f(an,2n-1),则bn+1-bn=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n,由递推式得
b2-b1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))1,
b3-b2=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))2,
…
bn-bn-1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n-1.
上述各式相加得bn-b1=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))1+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))2+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n-1=eq \f(\f(3,2)·\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n-1)),1-\f(3,2))=eq \f(3n,2n-1)-3,
又∵b1=eq \f(a1,20)=1,∴bn=eq \f(3n,2n-1)-3+b1=eq \f(3n,2n-1)-2,
∴an=2n-1·bn=2n-1eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3n,2n-1)-2))=3n-2n.
方法二 由题意知an+1=2an+3n,在等式两边同时除以3n得eq \f(an+1,3n)=eq \f(2an,3n)+1,
化简得eq \f(an+1,3n)=eq \f(2,3)·eq \f(an,3n-1)+1,
令bn=eq \f(an,3n-1),则bn+1=eq \f(2,3)bn+1,
等式两边同时减3得bn+1-3=eq \f(2,3)(bn-3),
则eq \b\lc\{\rc\}(\a\vs4\al\c1(bn-3))是b1-3=eq \f(a1,30)-3=-2为首项,eq \f(2,3)为公比的等比数列,
∴等比数列{bn-3}的通项公式bn-3=(-2)·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))n-1,
化简得bn=-eq \f(2n,3n-1)+3,
∴an=3n-1·bn=3n-1eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2n,3n-1)+3))=3n-2n.
方法三 待定系数法构造eq \b\lc\{\rc\}(\a\vs4\al\c1(an+λ·3n))为等比数列.
设an+1+λ·3n+1=2(an+λ·3n),
对比系数求得λ=-1,
∴数列{an-3n}是以a1-3=-2为首项,2为公比的等比数列,
an-3n=(-2)·2n=-2n,
∴an=3n-2n.
跟踪训练1 (1)已知在数列{an}中,a1=1,an+1=2an+2n+1,则an=________.
答案 3·2n-2n-3
解析 由题意知an+1=2an+2n+1,等式左右同加2(n+1)+3得
an+1+2(n+1)+3=2an+2n+1+2(n+1)+3=2an+4n+6=2(an+2n+3),
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(an+2n+3))是以a1+5=6为首项,2为公比的等比数列,
∴an+2n+3=3·2n,
化简得an=3·2n-2n-3.
(2)已知在数列{an}中,a1=1,且an+1=2an+n2-n+1,则通项公式an=________.
答案 3·2n-n2-n-3
解析 设an+1+x(n+1)2+y(n+1)+z=2(an+xn2+yn+z),
对比系数得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=1,,y-2x=-1,,z-x-y=1,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=1,,y=1,,z=3,))
所以eq \b\lc\{\rc\}(\a\vs4\al\c1(an+n2+n+3))是以6为首项,2为公比的等比数列.
所以an+n2+n+3=6·2n-1=3·2n,
故an=3·2n-n2-n-3.
考点二 形如an+1=pan+qan-1型
典例2 (2023·潍坊模拟)已知Sn是数列{an}的前n项和,且a1=a2=1,an=2an-1+
3an-2(n≥3),则下列结论正确的是( )
A.数列{an-an+1}为等比数列
B.数列{an+1+2an}为等比数列
C.S40=eq \f(1,4)(320-1)
D.an=eq \f(3n-1+-1n-1,2)
答案 D
解析 由题意得a3=2a2+3a1=5,a4=2a3+3a2=10+3=13,
由于a1-a2=0,故数列{an-an+1}不是等比数列,A错误;
a2+2a1=1+2=3,a3+2a2=5+2=7,a4+2a3=13+10=23,
由于eq \f(7,3)≠eq \f(23,7),故数列{an+1+2an}不为等比数列,B错误;
当n≥3时,an=2an-1+3an-2,
即an+an-1=3(an-1+an-2),
又a1+a2=1+1=2,
故{an+1+an}是首项为2,公比为3的等比数列,
故an+1+an=2×3n-1,
故a2+a1=2,a4+a3=2×32,…,a40+a39=2×338,
以上式子相加得S40=2×(1+32+34+…+338)=2×eq \f(1-340,1-9)=eq \f(340-1,4),C错误;
因为an+1+an=2×3n-1,
所以an+2+an+1=2×3n,
两式相减得an+2-an=2·3n-2·3n-1=4·3n-1,
当n=2k时,a2k-a2k-2=4×32k-3,a2k-2-a2k-4=4×32k-5,…,a4-a2=4×3,
以上式子相加得a2k-a2=4×(3+33+…+32k-3)=4×eq \f(3-32k-1,1-9)=eq \f(32k-1-3,2),
故a2k=eq \f(32k-1-3,2)+a2=eq \f(32k-1-1,2),
而a2=1也符合该式,故a2k=eq \f(32k-1-1,2),
令2k=n,得an=eq \f(3n-1-1,2)=eq \f(3n-1+-1n-1,2),
当n=2k-1时,a2k-1-a2k-3=4×32k-4,a2k-3-a2k-5=4×32k-6,…,a3-a1=4×30,
以上式子相加得a2k-1-a1=4×(32k-4+32k-6+…+30)=4×eq \f(1-32k-2,1-9)=eq \f(32k-2-1,2),
故a2k-1=eq \f(32k-2-1,2)+a1=eq \f(32k-2+1,2),
而a1=1也符合该式,故a2k-1=eq \f(32k-2+1,2),
令2k-1=n,得an=eq \f(3n-1+-1n-1,2),
综上,an=eq \f(3n-1+-1n-1,2),D正确.
跟踪训练2 (多选)(2023·吉安模拟)在数列{an}中,若a1=0,a2=1,2an+2=an+1+an(n∈N*),则下列结论正确的是( )
A.{an+1-an}是等比数列
B.a11=eq \f(31,47)
C.0≤an≤1
D.a8m),Sn-Sm的最大值为10
答案 ACD
解析 A,B选项,由an+1+an-1=2an-2,整理得(an+1-an)-(an-an-1)=-2,
故eq \b\lc\{\rc\}(\a\vs4\al\c1(an-an-1))是公差为-2的等差数列,首项a2-a1=9,故an-an-1=13-2n(n≥2),
由此可得an-1-an-2=15-2n,…,a3-a2=7,a2-a1=9,
累加得an=-n2+12n-32=(n-8)(4-n),n≥2,
又a1=-21也符合该式,
∴an=(n-8)(4-n),n∈N*,
由此可得eq \f(an,n-8)=4-n,故eq \f(an+1,n+1-8)-eq \f(an,n-8)=4-(n+1)-4+n=-1,
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n-8)))是等差数列,故A正确,B不正确;
C选项,∵an=-n2+12n-32=-(n-6)2+4,
当n=6时,an=-(n-6)2+4取最大值,
∴a6是数列{an}的最大项,故C正确;
D选项,对于任意正整数m,n(n>m),Sn-Sm=am+1+am+2+…+an,
由a1a11>…,
故Sn-Sm=3+4+3=10时,Sn-Sm取得最大值,最大值为10,故D正确.
6.(多选)(2023·岳阳模拟)设首项为1的数列{an}的前n项和为Sn,若Sn+1=2Sn+n-1(n∈N*),则下列结论正确的是( )
A.数列{Sn+n}为等比数列
B.数列{an}的通项公式为an=2n-1-1
C.数列{an+1}为等比数列
D.数列{2Sn}的前n项和为2n+2-n2-n-4
答案 AD
解析 ∵Sn+1=2Sn+n-1,
∴Sn+1+(n+1)=2(Sn+n),
又S1+1=2≠0,
∴数列{Sn+n}是首项和公比都为2的等比数列,
故选项A正确;
Sn+n=2n,∴2Sn=2n+1-2n,
∴数列{2Sn}的前n项和为eq \f(221-2n,1-2)-2×eq \f(nn+1,2)=2n+2-n2-n-4,
故选项D正确;
Sn+n=2n,∴Sn=2n-n,
当n≥2时,an=Sn-Sn-1=2n-1-1,
当n=1时,a1=1,
∴an=eq \b\lc\{\rc\ (\a\vs4\al\c1(1,n=1,,2n-1-1,n≥2,))
故选项B错误;
∵an+1=eq \b\lc\{\rc\ (\a\vs4\al\c1(2,n=1,,2n-1,n≥2,))
∴eq \f(a2+1,a1+1)≠eq \f(a3+1,a2+1),
∴数列{an+1}不是等比数列,
故选项C错误.
7.已知a1=1,当n≥2时,an=eq \f(1,2)an-1+2n-1,则{an}的通项公式为________.
答案 an=eq \f(3,2n-1)+4n-6
解析 设an+An+B=eq \f(1,2)[an-1+A(n-1)+B],
∴an=eq \f(1,2)an-1-eq \f(1,2)An-eq \f(1,2)A-eq \f(1,2)B,
∴eq \b\lc\{\rc\ (\a\vs4\al\c1(-\f(1,2)A=2,,-\f(1,2)A-\f(1,2)B=-1,))
解得eq \b\lc\{\rc\ (\a\vs4\al\c1(A=-4,,B=6,))
又a1-4+6=3,
∴{an-4n+6}是以3为首项,eq \f(1,2)为公比的等比数列,
∴an-4n+6=3×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1,
∴an=eq \f(3,2n-1)+4n-6.
8.在数列{an}中,若a1=1,a2=4,an+2+2an=3an+1,则数列{an}的通项公式为____________.
答案 an=3·2n-1-2
解析 ∵an+2+2an=3an+1,
∴an+2-an+1=2an+1-2an=2(an+1-an),
∴{an+1-an}为等比数列,首项为a2-a1=3,公比为2,
∴an+1-an=3·2n-1,
∵a2-a1=3,a3-a2=6,a4-a3=12,…,an-an-1=3·2n-2(n≥2),
∴(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=an-a1=3·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1-2n-1,1-2)))=3·2n-1-3,
又a1=1,∴an=3·2n-1-2(n≥2),
又a1=1符合上式,所以an=3·2n-1-2.
9.(2023·泉州模拟)设数列{an}满足a1=3,an=2an-1-n+2(n≥2).
(1)证明:数列{an-n}为等比数列,并求数列{an}的通项公式;
(2)数列{bn}满足an=2nbn,求b1+b2+b3+…+bn的值.
(1)证明 ∵a1=3,an=2an-1-n+2(n≥2),
∴an-n=2[an-1-(n-1)],
∵eq \f(an-n,an-1-n-1)=2(n≥2),
∴数列{an-n}是首项为a1-1=2,公比为2的等比数列,
∴an-n=2n,则an=2n+n.
(2)解 因为an=2nbn,所以bn=eq \f(an,2n)=eq \f(2n+n,2n)=1+eq \f(n,2n),
令cn=eq \f(n,2n),且数列{cn}的前n项和为Tn,
则Tn=eq \f(1,21)+eq \f(2,22)+eq \f(3,23)+eq \f(4,24)+…+eq \f(n,2n),①
eq \f(1,2)Tn=eq \f(1,22)+eq \f(2,23)+eq \f(3,24)+…+eq \f(n,2n+1),②
由①-②得eq \f(1,2)Tn=eq \f(1,21)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n)-eq \f(n,2n+1)
=eq \f(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n))),1-\f(1,2))-eq \f(n,2n+1)=1-eq \f(2+n,2n+1),
则Tn=2-eq \f(2+n,2n),
所以b1+b2+b3+…+bn=Tn+n=n+2-eq \f(2+n,2n)=(n+2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n))).
10.(2023·朝阳模拟)已知数列{an}的前n项和为Sn=eq \f(n,n+1)(n∈N*),数列{bn}满足b1=1,且bn+1=eq \f(bn,bn+2)(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)对于n∈N*,试比较bn+1与an的大小.
解 (1)当n=1时,a1=S1=eq \f(1,2);
当n≥2时,an=Sn-Sn-1=eq \f(n,n+1)-eq \f(n-1,n)=eq \f(1,nn+1)=eq \f(1,n2+n),
经检验,当n=1时,a1=eq \f(1,2)也符合上式,
∴数列{an}的通项公式为an=eq \f(1,n2+n).
(2)易知bn>0,两边取倒数得eq \f(1,bn+1)=eq \f(bn+2,bn),
整理得eq \f(1,bn+1)+1=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,bn)+1)),∵eq \f(1,b1)+1=2,
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,bn)+1))是以2为首项,2为公比的等比数列,
∴eq \f(1,bn)+1=2×2n-1=2n,
∴bn=eq \f(1,2n-1).
(3)由(1)(2)可知,比较bn+1=eq \f(1,2n+1-1)与an=eq \f(1,n2+n)的大小,
即比较2n+1-1与n2+n的大小.
当n=1时,21+1-1=3,12+1=2,有3>2;
当n=2时,22+1-1=7,22+2=6,有7>6;
当n=3时,23+1-1=15,32+3=12,有15>12,
猜想2n+1-1>n2+n,下面证明:
方法一 当n≥4时,
2n+1-1=(1+1)n+1-1=Ceq \\al(0,n+1)+Ceq \\al(1,n+1)+Ceq \\al(2,n+1)+…+Ceq \\al(n-1,n+1)+Ceq \\al(n,n+1)+Ceq \\al(n+1,n+1)-1
≥2Ceq \\al(0,n+1)+2Ceq \\al(1,n+1)+2Ceq \\al(2,n+1)-1
=2+2(n+1)+(n+1)n-1>n2+n,
∴对于任意的n∈N*都成立,
∴bn+12x+1(ln eq \r(e))2-2=2x-1-2,
∴当x∈[4,+∞)时,g′(x)>2x-1-2>0,g(x)即f′(x)在[4,+∞)上单调递增,
f′(x)≥f′(4)=25·ln 2-2×4-1>25×ln eq \r(e)-2×4-1=7>0,
∴f(x)在[4,+∞)上单调递增,
∴f(x)≥f(4)>24+1-1-42-4=11>0,
∴2x+1-1-x2-x>0,
即2x+1-1>x2+x,
∴对于任意的n∈N*都成立,
∴bn+1
相关试卷
这是一份高考数学专题练 专题三 微专题21 等差数列、等比数列(含答案),共17页。
这是一份高考数学专题练 专题三 微专题24 数列的奇偶项、增减项问题(含答案),共13页。
这是一份微专题10 数列的递推关系与通项-2024年高考数学二轮微专题系列,共16页。试卷主要包含了求数列{an}的通项公式,已知数列{an}满足等内容,欢迎下载使用。