2024年高考第二次模拟考试:数学(新高考Ⅰ卷02)(考试版)
展开(考试时间:120分钟 试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合,,则( )
A.A=BB.C.D.
2.已知复数满足,则(为虚数单位)的最大值为( )
A.4B.5C.6D.7
3.已知,则( )
A.B.C.D.
4.传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为( )吨.(1kg麦子大约20000粒,lg2=0.3)
A.105B.107C.1012D.1015
5.已知,则实数的大小关系为( )
A.B.
C.D.
6.在平面直角坐标系中,已知圆:,若直线:上有且只有一个点满足:过点作圆C的两条切线PM,PN,切点分别为M,N,且使得四边形PMCN为正方形,则正实数m的值为( )
A.1B.C.3D.7
7.在等比数列中,,若,且的前项和为,则满足的最小正整数的值为( )
A.5B.6C.7D.8
8.已知函数,数列满足,,,则( )
A.0B.1C.675D.2023
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.下列结论正确的有( )
A.若随机变量,满足,则
B.若随机变量,且,则
C.若线性相关系数越接近1,则两个变量的线性相关性越强
D.按从小到大顺序排列的两组数据:甲组:27,30,37,m,40,50;乙组:24,n,33,44.48,52,若这两组数据的第30百分位数、第50百分位数都分别对应相等,则
10.已知双曲线E:的左、右焦点分别为,,过且斜率为的直线l与E的右支交于点P,若,则( )
A.E的离心率为B.E的渐近线方程为
C.P到直线x=1的距离为D.以实轴为直径的圆与l相切
11.在数列中,对于任意的都有,且,则下列结论正确的是( )
A.对于任意的,都有
B.对于任意的,数列不可能为常数列
C.若,则数列为递增数列
D.若,则当时,
12.如图,在矩形中,,,为的中点,现分别沿、将、翻折,使点、重合,记为点,翻折后得到三棱锥,则( )
A.
B.三棱锥的体积为
C.三棱锥外接球的半径为
D.直线与所成角的余弦值为
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分.
13.某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为
14.已知椭圆的左,右焦点分别为,,椭圆C在第一象限存在点M,使得,直线与y轴交于点A,且是的角平分线,则椭圆C的离心率为 .
15.已知函数,若存在四个不相等的实根,,,,则的最小值是 .
16.欧拉是瑞士数学家和物理学家,近代数学先驱之一,在许多数学的分支中经常可以见到以他的名字命名的重要函数、公式和定理.如著名的欧拉函数:对于正整数n,表示小于或等于n的正整数中与n互质的数的个数,如,.那么,数列的前n项和为 .
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(10分)在中,内角、、所对的边分别为、、,已知.
(1)求角;
(2)若为边上一点(不包含端点),且满足,求的取值范围.
18.(12分)已知数列的前项和为,,,数列满足,且.
(1)求数列和的通项公式;
(2)设,求数列的前项和.
19.(12分)如图,在三棱锥中,平面平面,为等边三角形,D,E分别为,的中点,,,.
(1)求证:平面;
(2)在线段上是否存在点F,使得平面与平面的夹角为,若存在,求出的长;若不存在,请说明理由.
20.(12分)某高校“植物营养学专业”学生将鸡冠花的株高增量作为研究对象,观察长效肥和缓释肥对农作物影响情况.其中长效肥、缓释肥、未施肥三种处理下的鸡冠花分别对应1,2,3三组.观察一段时间后,分别从1,2,3三组随机抽取40株鸡冠花作为样本,得到相应的株高增量数据整理如下表.
假设用频率估计概率,且所有鸡冠花生长情况相互独立.
(1)从第1组所有鸡冠花中随机选取1株,估计株高增量为厘米的概率;
(2)分别从第1组,第2组,第3组的所有鸡冠花中各随机选取1株,记这3株鸡冠花中恰有株的株高增量为厘米,求的分布列和数学期望;
(3)用“”表示第组鸡冠花的株高增量为,“”表示第组鸡冠花的株高增量为厘米,,直接写出方差,,的大小关系.(结论不要求证明)
21.(12分)已知椭圆E:的长轴长为4,由E的三个顶点构成的三角形的面积为2.
(1)求E的方程;
(2)记E的右顶点和上顶点分别为A,B,点P在线段AB上运动,垂直于x轴的直线PQ交E于点M(点M在第一象限),P为线段QM的中点,设直线AQ与E的另一个交点为N,证明:直线MN过定点.
22.(12分)已知函数.
(1)当时,存在,使得,求M的最大值;
(2)已知m,n是的两个零点,记为的导函数,若,且,证明:.株高增量(单位:厘米)
第1组鸡冠花株数
9
20
9
2
第2组鸡冠花株数
4
16
16
4
第3组鸡冠花株数
13
12
13
2
2024年高考第二次模拟考试:数学(新高考专用卷)02(考试版): 这是一份2024年高考第二次模拟考试:数学(新高考专用卷)02(考试版),共5页。试卷主要包含了本试卷分第Ⅰ卷两部分, 已知,为椭圆, 已知函数.,约数,又称因数.它的定义如下等内容,欢迎下载使用。
2024年高考第二次模拟考试:数学(新高考Ⅰ卷02)(考试版): 这是一份2024年高考第二次模拟考试:数学(新高考Ⅰ卷02)(考试版),共5页。试卷主要包含了本试卷分第Ⅰ卷两部分,测试范围,在平面直角坐标系中,已知圆,已知函数,数列满足,,,则,下列结论正确的有,已知双曲线E等内容,欢迎下载使用。
2024年高考第二次模拟考试:数学(新高考专用卷)02(考试版): 这是一份2024年高考第二次模拟考试:数学(新高考专用卷)02(考试版),共5页。试卷主要包含了本试卷分第Ⅰ卷两部分, 已知,为椭圆, 已知函数.,约数,又称因数.它的定义如下等内容,欢迎下载使用。