中考强化练习湖南省岳阳市中考数学模拟汇总 (A)卷(精选)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7B.6C.5D.4
2、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
3、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
4、如图所示,在长方形ABCD中,,,且,将长方形ABCD绕边AB所在的直线旋转一周形成圆柱甲,再将长方形ABCD绕边BC所在直线旋转一周形成圆柱乙,记两个圆柱的侧面积分別为、.下列结论中正确的是( )
A.B.C.D.不确定
5、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
6、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.B.
C.D.
7、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
8、已知单项式5xayb+2的次数是3次,则a+b的值是( )
A.1B.3C.4D.0
9、下列几何体中,截面不可能是长方形的是( )
A.长方体B.圆柱体
C.球体D.三棱柱
10、在如图所示的几何体中,从不同方向看得到的平面图形中有长方形的是( )
A.①B.②C.①②D.①②③
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算:2a2﹣(a2+2)=_______.
2、如图,平分,,,则__.
3、若a+b=﹣3,ab=1,则(a+1)(b+1)(a﹣1)(b﹣1)=_____.
4、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、如图,在中,,,与分别是斜边上的高和中线,那么_______度.
三、解答题(5小题,每小题10分,共计50分)
1、现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?
2、如图,△ABC中,∠BAC=90°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.
3、已知:如图,锐角∠AOB.
求作:射线OP,使OP平分∠AOB.
作法:
①在射线OB上任取一点M;
②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;
③分别以点C,D为圆心,大于的长为半径画弧,在∠AOB内部两弧交于点H;
④作射线MH,交⊙M于点P;
⑤作射线OP.
射线OP即为所求.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接CD.
由作法可知MH垂直平分弦CD.
∴( )(填推理依据).
∴∠COP = .
即射线OP平分∠AOB.
4、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为,,.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)若与关于y轴对称,画出;
(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.
5、为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩按“优秀”、“良好”、“及格”、“不及格”四个等级进行统计,并绘制了如图所示的扇形统计图和条形统计图(部分信息未给出).根据以上提供的信息,解答下列问题:
(1)本次调查共抽取了多少名学生?
(2)①请补全条形统计图;
②求出扇形统计图中表示“及格”的扇形的圆心角度数.
(3)若该校有2400名学生参加此次竞赛,估计这次竞赛成绩为“优秀”和“良好”等级的学生共有多少名?
-参考答案-
一、单选题
1、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
2、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
3、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
4、C
【分析】
根据公式,得=,=,判断选择即可.
【详解】
∵=,=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴=.
故选C.
【点睛】
本题考查了圆柱体的形成及其侧面积的计算,正确理解侧面积的计算公式是解题的关键.
5、D
【分析】
先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
【详解】
解:由数轴的性质得:.
A、,则此项错误;
B、,则此项错误;
C、,则此项错误;
D、,则此项正确;
故选:D.
【点睛】
本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
6、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
7、C
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
【详解】
解:
A、不是中心对称图形,是轴对称图形,故此选项错误;
B、是中心对称图形,不是轴对称图形,故此选项错误;
C、是中心对称图形,也是轴对称图形,故此选项正确;
D、不是中心对称图形,是轴对称图形,故此选项错误;
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、A
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据单项式的次数的概念求解.
【详解】
解:由题意得:a+b+2=3,
∴a+b=1.
故选:A.
【点睛】
本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
9、C
【分析】
根据长方体、圆柱体、球体、三棱柱的特征,找到用一个平面截一个几何体得到的形状不是长方形的几何体解答即可.
【详解】
解:长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,
故选:C.
【点睛】
此题考查了截立体图形,正确掌握各几何体的特征是解题的关键.
10、C
【分析】
分别找出每个图形从三个方向看所得到的图形即可得到答案.
【详解】
①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,符合要求;
②圆柱从左面和正面看都是长方形,从上边看是圆,符合要求;
③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,不符合要求;故选:C.
【点睛】
本题考查了从不同方向看几何体,掌握定义是关键.注意正方形是特殊的长方形.
二、填空题
1、##-2+a2
【解析】
【分析】
根据整式的加减运算法则即可求出答案.
【详解】
解:原式=2a2-a2-2
=.
【点睛】
本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,特别注意括号前面是负号去掉括号和负号括号里面各项都要变号.本题属于基础题型.
2、##BC//DE
【解析】
【分析】
由平分,可得,再根据同旁内角互补两直线平行可得结论.
【详解】
解:平分,,
∴=2=110°,
,
∴∠C+∠CDE=70°+110°=180°,
.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:.
【点睛】
本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
3、-5
【解析】
【分析】
根据多项式乘多项式的乘法法则解决此题.
【详解】
解:∵a+b=-3,ab=1,
∴(a+1)(b+1)(a-1)(b-1)
=[(a+1)(b+1)][(a-1)(b-1)]
=(ab+a+b+1)(ab-a-b+1)
=(1-3+1)×(1+3+1)
=-1×5
=-5.
故答案为:-5.
【点睛】
本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键.
4、
【解析】
【分析】
根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
【详解】
如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
∵,
∴设,,,
由旋转可得:,,,
∴,,
∴,,,
∵AN是平分线,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,即可得,
∴,
设直线BE的解析式为,
把,代入得:,
解得:,
∴,
当时,,
解得:,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
5、50
【解析】
【分析】
根据直角三角形中线的性质及互为余角的性质计算.
【详解】
解:,为边上的高,
,
,是斜边上的中线,
,
,
的度数为.
故答案为:50.
【点睛】
本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质.
三、解答题
1、面值为5元得人民币由12张,面值为2元得人民币由20张.
【分析】
设面值为5元得人民币由张,面值为2元得人民币由张,然后由面值共100元,列出方程,解方程即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解答:解:设面值为5元得人民币由张,面值为2元得人民币由张,
根据题意得:,
解得:(张,
(张.
答:面值为5元得人民币由12张,面值为2元得人民币由20张.
【点睛】
此题属于一元一次方程的应用题,关键是由题意列出方程.
2、60°
【分析】
由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.
【详解】
解:由折叠可知,∠BAD=∠B'AD,
∵AB'平分∠CAD.
∴∠B'AC=∠B'AD,
∴∠BAD=∠B'AC=∠B'AD,
∵∠BAC=90°,
∴∠BAD=∠B'AC=∠B'AD=30°,
∴∠BAB'=60°.
【点睛】
本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.
3、
(1)见解析
(2)垂径定理及推论;∠DOP
【分析】
(1)根据题干在作图方法依次完成作图即可;
(2)由垂径定理先证明 再利用圆周角定理证明即可.
(1)
解:如图, 射线OP即为所求.
(2)
证明:连接CD.
由作法可知MH垂直平分弦CD.
∴( 垂径定理 )(填推理依据).
∴∠COP =.
即射线OP平分∠AOB.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查的是平分线的作图,垂径定理的应用,圆周角定理的应用,熟练的运用垂径定理证明是解本题的关键.
4、
(1)见解析
(2)
【分析】
(1)根据关于y轴对称的点的坐标特征,先得到A、B、C关于y轴对称的对应点、、的坐标,然后在坐标系中描出、、三点,最后顺次连接、、三点即可得到答案;
(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.
(1)
解:如图所示,即为所求;
(2)
解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,
由图可知点P的坐标为(3,3).
【点睛】
本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.
5、
(1)100名
(2)①见解析;②
(3)1440名
【分析】
(1)用不及格的人数除以不及格的人数占比即可得到总人数;
(2)①根据(1)算出的总人数先求出良好的人数,然后求出优秀的人数即可补全统计图;②先求出及格人数的占比,然后用360°乘以及格人数的占比即可得到答案;
(3)先求出样本中,优秀和良好的人数占比,然后估计总体中优秀和良好的人数即可.
(1)
解:由题意得抽取的学生人数为:(名);
(2)
解:①由题意得:良好的人数为:(名),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴优秀的人数为:(名),
∴补全统计图如下所示:
②由题意得:扇形统计图中表示“及格”的扇形的圆心角度数=;
(3)
解:由题意得:估计这次竞赛成绩为“优秀”和“良好”等级的学生共有(名).
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,画条形统计图,求扇形统计图某一项的圆心角度数,用样本估计总体等等,正确读懂统计图是解题的关键.
中考强化练习湖南省中考数学模拟汇总 卷(Ⅲ)(含答案解析): 这是一份中考强化练习湖南省中考数学模拟汇总 卷(Ⅲ)(含答案解析),共34页。试卷主要包含了如图个三角形.等内容,欢迎下载使用。
中考强化练习湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含答案及解析): 这是一份中考强化练习湖南省怀化市中考数学模拟汇总 卷(Ⅲ)(含答案及解析),共39页。试卷主要包含了下列图形是全等图形的是等内容,欢迎下载使用。
中考强化练习湖南省娄底市中考数学模拟 (B)卷(精选): 这是一份中考强化练习湖南省娄底市中考数学模拟 (B)卷(精选),共23页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。