综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、已知10a=20,100b=50,则a+2b+3的值是( )
A.2B.6C.3D.
2、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是( )
A.15海里B.20海里C.30海里D.60海里
3、如图,在梯形中,,,,那么下列结论不正确的是( )
A.B.
C.D.
4、如图,在中,,,,则( )
A.B.C.D.
5、计算:的结果是( )
A.B.C.D.
二、多选题(5小题,每小题4分,共计20分)
1、下列多项式乘法中可以用平方差公式计算的是( )
A.(﹣a+b)(a+b)B.(-x+2)(-2-x)
C.(+y)(y﹣)D.(x﹣2)(x+1)
2、如图,BE=CF,AB=DE,添加下列哪些条件不能推证△ABC≌△DEF( )
A.BC=EFB.∠C=∠FC.AB∥DED.∠A=∠D
3、如图所示的标志中,是轴对称图形的有( )
A.B.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.D.
4、在中,与的平分线交于点I,过点I作交于点D,交于点E,且,,,则下列说法正确的是( )
A.和是等腰三角形B.
C.的周长是8D.
5、如图,在四边形ABCD中,边AB与AD关于AC对称,则下面结论正确的是( )
A.CA平分∠BCD;B.AC平分∠BAD;C.DB⊥AC;D.BE=DE.
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、若关于x的方程无解,则m的值为__.
2、若,则=_______
3、内部有一点P,,点P关于的对称点为M,点P关于的对称点为N,若,则的周长为___________.
4、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.
5、如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为__.
四、解答题(5小题,每小题8分,共计40分)
1、先化简,再求值:,其中.
2、先分解因式,再求值:,其中,.
3、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;
(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).
4、已知:如图,是的角平分线,于点 ,于点,,求证:是的中垂线.
5、阅读材料并完成习题:
在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.
解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.
(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.
(2)请你用上面学到的方法完成下面的习题.
如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.
-参考答案-
一、单选题
1、B
【解析】
【分析】
把100变形为102,两个条件相乘得a+2b=3,整体代入求值即可.
【详解】
解:∵10a×100b=10a×102b=10a+2b=20×50=1000=103,
∴a+2b=3,
∴原式=3+3=6,
故选:B.
【考点】
本题考查了幂的乘方,同底数幂的乘法,解题的关键是:把100变形为102,两个条件相乘得a+2b=3,整体代入求值.
2、C
【解析】
【分析】
根据题意画出图形,根据三角形外角性质求出∠C=∠CAB=42°,根据等角对等边得出BC=AB,求出AB即可.
【详解】
解:∵根据题意得:∠CBD=84°,∠CAB=42°,
∴∠C=∠CBD-∠CAB=42°=∠CAB,
∴BC=AB,
∵AB=15海里/时×2时=30海里,
∴BC=30海里,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
即海岛B到灯塔C的距离是30海里.
故选C.
【考点】
本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出∠C=∠CAB,题目比较典型,难度不大.
3、A
【解析】
【分析】
A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出∠ADB=90°,从而得出B正确;C、由梯形的性质得出AB∥CD,结合角的计算即可得出∠ABC=60°,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出∠DAC=∠CAB,即D正确.综上即可得出结论.
【详解】
A、∵AD=DC,
∴AC<AD+DC=2CD,
故A不正确;
B、∵四边形ABCD是等腰梯形,
∴∠ABC=∠BAD,
在△ABC和△BAD中,
,
∴△ABC≌△BAD(SAS),
∴∠BAC=∠ABD,
∵AB∥CD,
∴∠CDB=∠ABD,∠ABC+∠DCB=180°,
∵DC=CB,
∴∠CDB=∠CBD=∠ABD=∠BAC,
∵∠ACB=90°,
∴∠CDB=∠CBD=∠ABD=30°,
∴∠ABC=∠ABD+∠CBD=60°,B正确,
C、∵AB∥CD,
∴∠DCA=∠CAB,
∵AD=DC,
∴∠DAC=∠DCA=∠CAB,C正确.
D、∵△DAB≌△CBA,
∴∠ADB=∠BCA.
∵AC⊥BC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠ADB=∠BCA=90°,
∴DB⊥AD,D正确;
故选:A.
【考点】
本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误.本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可.
4、D
【解析】
【分析】
先根据等腰三角形的性质得到∠B的度数,再根据平行线的性质得到∠BCD.
【详解】
解:∵AB=AC,∠A=40°,
∴∠B=∠ACB=70°,
∵CD∥AB,
∴∠BCD=∠B=70°,
故选D.
【考点】
本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.
5、B
【解析】
【分析】
根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.
【详解】
解:原式.
故选B.
【考点】
此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.
二、多选题
1、ABC
【解析】
【分析】
根据平方差公式:进行逐一判断即可.
【详解】
解:A、,符合平方差公式的形式,故符合题意;
B、,符合平方差公式的形式,故符合题意;
C、,符合平方差公式的形式,故符合题意;
D、,不符合平方差公式的形式,故不符合题意;
故选ABC.
【考点】
本题主要考查了平方差公式,解题的关键在于能够熟练掌握平方差公式.
2、ABD
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得△ABC≌△DEF,从而可以解答本题.
【详解】
解:∵BE=CF,
∴BE+EC=CF+EC,
∴BC=EF,
又∵AB=DE,
∴添加条件BC=EF,根据SS不能判断△ABC≌△DEF,故选项A符合题意;
添加条件∠C=∠F,根据SSA不能判断△ABC≌△DEF,故选项B符合题意;
添加条件AB∥DE,可以得到∠B=∠DEF,根据(SAS)可判断△ABC≌△DEF,故选项C不符合题意;
添加条件∠A=∠D,根据SSA不能判断△ABC≌△DEF,故选项D符合题意;
故选:ABD.
【考点】
本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
3、ACD
【解析】
【分析】
依据轴对称图形的定义解答,即:一个图形沿一条直线对折,对折后的两部分都能完全重合,则这个图形关于这条直线对称,这条直线就是这个图形的对称轴.
【详解】
解:根据轴对称图形的意义可知:选项A、C、D都是轴对称图形,而B不是轴对称图形;
故选:ACD.
【考点】
本题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.
4、ACD
【解析】
【分析】
根据角平线的定义和平行线的性质,可得∠DIB=∠DBI,∠EIC=∠ECI,从而证得和是等腰三角形,得到A正确;根据题意,无法得到,根据等腰三角形的性质,可得DE =BD+CE,从而得到的周长AD+AE+DE=AD+AE+BD+CE=AB+AC,得到C正确;再根据角平分线的定义,三角形的内角和定理,可判断D正确,即可求解.
【详解】
解:∵BI与CI分别平分与 ,
∴∠DBI=∠CBI,∠ECI=∠BCI,
∵,
∴∠DIB=∠CBI,∠EIC=∠BCI,
∴∠DIB=∠DBI,∠EIC=∠ECI,
∴BD=ID,CE=IE,
∴和是等腰三角形,故A正确;
根据题意,无法得到,故B错误;
∵BD=ID,CE=IE,
∴DE=DI+EI=BD+CE,
∵,,
∴的周长AD+AE+DE=AD+AE+BD+CE=AB+AC=5+3=8,故C正确;
∵,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠ABC+∠ACB=180°-∠A=130°,
∵BI与CI分别平分与 ,
∴∠CBI+∠BCI= ,
∴,故D正确.
故选:ACD.
【考点】
本题主要考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义,三角形的内角和定理,熟练掌握相关知识点是解题的关键.
5、ABCD
【解析】
【分析】
根据轴对称的性质得出∠BAC=∠DAC,AC⊥BD,BE=DE,根据线段垂直平分线性质得出BC=DC,根据等腰三角形性质得出∠BCA=∠DCA即可.
【详解】
解:∵在四边形ABCD中,边AB与AD关于AC对称,
∴∠BAC=∠DAC,即AC平分∠BAD ,AC⊥BD,BE=DE,
∴BC=DC,
∴∠BCA=∠DCA,即CA平分∠BCD;
∴ABCD都正确;
故选:ABCD.
【考点】
本题考查了轴对称的性质,线段垂直平分线性质,等腰三角形的性质的应用,主要考查学生推理能力,注意:如果两个图形关于某一直线对称,那么这两个图形是全等形,对称轴是对应点连线的垂直平分线.
三、填空题
1、-1或5或
【解析】
【分析】
直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.
【详解】
去分母得:,
可得:,
当时,一元一次方程无解,
此时,
当时,
则,
解得:或.
故答案为:或或.
【考点】
此题主要考查了分式方程的解,正确分类讨论是解题关键.
2、1或-2
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据除0外的数的任何次幂都是1及1的任何次幂都是1,所以当,和时解得或即可得解此题.
【详解】
解:∵,
∴可分以下三种情况讨论:
时,
且为偶数时,
,时,
∵ 时,,1为奇数,
∴②的情况不存在,
∵当时,,
∴③的情况存在,
综上所述,符合条件的a的值为:1,-2,
故答案为:1或-2.
【考点】
本题考查了乘方性质的应用,解题的关键是了解乘方是1的数的所有可能情况.
3、15
【解析】
【分析】
根据轴对称的性质可证∠MON=2∠AOB=60°;再利用OM=ON=OP,即可求出的周长.
【详解】
解:根据题意可画出下图,
∵OA垂直平分PM,OB垂直平分PN.
∴∠MOA=∠AOP,∠NOB=∠BOP;OM=OP=ON=5cm.
∴∠MON=2∠AOB=60°.
∴为等边三角形。
△MON的周长=3×5=15.
故答案为:15.
【考点】
此题考查了轴对称的性质及相关图形的周长计算,根据轴对称的性质得出∠MON=2∠AOB=60°是解题关键.
4、2或
【解析】
【详解】
可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.
【解答】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,
∵AB=8cm,
∴PC=8cm,
∴BP=12﹣8=4(cm),
∴2t=4,解得:t=2,
∴CQ=BP=4cm,
∴v×2=4,
解得:v=2;
②当BA=CQ,PB=PC时,△ABP≌△QCP,
∵PB=PC,
∴BP=PC=6cm,
∴2t=6,解得:t=3,
∵CQ=AB=8cm,
∴v×3=8,
解得:v=,
综上所述,当v=2或时,△ABP与△PQC全等,
故答案为:2或.
【考点】
此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键.
5、76°
【解析】
【分析】
根据平行线的性质和三角形的内角和解答即可.
【详解】
解:∵∠CEF=∠CHD,
∴DH∥GE,
∴∠ADH=∠G,
∵∠EFC=∠ADH,
∵∠BFG=∠EFC,
∴∠G=∠BFG,
∴∠ABC=∠G+∠BFG=2∠EFC,
∵∠CEF:∠EFC=5:2,∠C=47°,
∴∠EFC=38°,
∴∠ABC=76°,
∵DE∥BC,
∴∠ADE=∠ABC=76°,
故答案为:76°.
【考点】
本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.
四、解答题
1、,4.
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
把分子、分母进行因式分解,先根据分式乘法法则计算,再根据分式加减法法则化简得出最简结果,最后代入求值即可.
【详解】
=
.
当时,原式.
【考点】
本题考查分式的运算——化简求值,熟练掌握分式的混合运算法则是解题关键.
2、,.
【解析】
【分析】
先利用分组分解法、公式法、提公因式法进行因式分解,再将a、b的值代入求值即可得.
【详解】
原式,
,
,
当,时,原式,
,
.
【考点】
本题考查了利用分组分解法、公式法、提公因式法进行因式分解,因式分解的主要方法包括:提公因式法、公式法、十字相乘法、分组分解法等,熟练掌握各方法是解题关键.
3、(1)60°;(2)β-α.
【解析】
【分析】
(1)根据平行线的性质和平角的定义可得∠EBC=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;
(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.
【详解】
解:(1)∵EF∥BC,∠BEF=120°,
∴∠EBC=60°,∠AEF=60°,
又∵BD平分∠EBC,
∴∠EBD=∠BDE=∠DBC=30°,
又∵∠BDA=90°,
∴∠EDA=60°,
∴∠BAD=60°;
(2)如图2,过点A作AG∥BC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,
则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.
【考点】
考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.
4、见解析.
【解析】
【分析】
由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt△CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.
【详解】
解:是的角平分线,,,
,,
在和中,
,
,
,
,
是的角平分线,
是的中垂线.
【考点】
此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.
5、(1)2;(2)4
【解析】
【分析】
(1)根据题意可直接求等腰直角三角形EAC的面积即可;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.
【详解】
(1)由题意知,
故答案为2;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:
FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,
∠FNK=∠FGH=90°,,
FH=FK,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
又FM=FM,HM=KM=MN+GH=MN+NK,
,
MK=FN=2cm,
.
【考点】
本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.
综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(详解版): 这是一份综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(详解版),共22页。
综合解析人教版数学八年级上册期末综合训练试题 (B)卷(解析卷): 这是一份综合解析人教版数学八年级上册期末综合训练试题 (B)卷(解析卷),共19页。
综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(含详解): 这是一份综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(含详解),共20页。