综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(含答案解析)
展开
这是一份综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(含答案解析),共27页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、已知锐角,如图,(1)在射线上取点,,分别以点为圆心,,长为半径作弧,交射线于点,;(2)连接,交于点.根据以上作图过程及所作图形,下列结论错误的是( )
A.B.
C.若,则D.点在的平分线上
2、如图,在中,,分别是,边上的中线,且与相交于点,则的值为( )
A.B.C.D.
3、工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是( )
A.B.C.D.
4、等腰三角形有两条边长为5cm和9cm,则该三角形的周长是
A.19cmB.23cmC.19cm或23cmD.18cm
5、将一副三角尺按如图所示的方式摆放,则的大小为( )
A.B.C.D.
二、多选题(5小题,每小题4分,共计20分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、下列说法正确的是( )
A.相等的角是对顶角
B.一个四边形的四个内角中最多可以有三个锐角
C.两条直线被第三条直线所截,内错角相等
D.两直线相交形成的四个角相等,则这两条直线互相垂直
2、如图,O是正六边形ABCDE的中心,下列图形不可能由△OBC平移得到的是( )
A.△OCDB.△OABC.△OAFD.△OEF
3、一个多边形被截去一个角后,变为五边形,原来的多边形是几边形( )
A.3B.4C.5D.6
4、如图,若判断,则需要添加的条件是( )
A.,B.,
C.,D.,
5、下列命题中正确的是( )
A.有两个角和第三个角的平分线对应相等的两个三角形全等;
B.有两条边和第三条边上的中线对应相等的两个三角形全等;
C.有两条边和第三条边上的高对应相等的两个三角形全等
D.有两条边和一个角对应相等的两个三角形全等
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
2、如图,将分别含有、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为_______.
3、如图,将三角尺和三角尺 (其中)摆放在一起,使得点在同一条直线上,交于点,那么度数等于_____.
4、如图,中,点,分别在,上,与交于点,若,,,则的面积______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、如图,△ABC的中线BD、CE相交于点F,若△BEF的面积是3,则△ABC的面积是__.
四、解答题(5小题,每小题8分,共计40分)
1、如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.
(1)求证:;
(2)证明:∠1=∠3.
2、如图,BC⊥AD,垂足为点C,∠A27°,∠BED44°. 求:
(1)∠B的度数;
(2)∠BFD的度数.
3、阅读材料并完成习题:
在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.
解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.
(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.
(2)请你用上面学到的方法完成下面的习题.
如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.
4、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)特殊探究:若,则_________度,________度,_________度;
(2)类比探索:请猜想与的关系,并说明理由;
(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.
5、已知://.求证://.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意可知,即可推断结论A;先证明,再证明即可证明结论B;连接OP,可证明可证明结论D;由此可知答案.
【详解】
解:由题意可知,
,
,
故选项A正确,不符合题意;
在和中,
,
,
在和中,
,
,
,
故选项B正确,不符合题意;
连接OP,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
在和中,
,
,
,
点在的平分线上,
故选项D正确,不符合题意;
若,,
则,
而根据题意不能证明,
故不能证明,
故选项C错误,符合题意;
故选:C.
【考点】
本题考查角平分线的判定,全等三角形的判定与性质,明确以某一半径画弧时,准确找到相等的线段是解题的关键.
2、A
【解析】
【分析】
根据三角形的重心性质得到,根据三角形的面积公式得到,,据此解题.
【详解】
解:点是,边上的中线,的交点,
,,
,,
,
,
故选:.
【考点】
本题考查三角形重心的概念与性质、三角形面积等知识,是重要考点,掌握相关知识是解题关键.
3、D
【解析】
【分析】
根据全等三角形的判定条件判断即可.
【详解】
解:由题意可知
在中
∴(SSS)
∴
∴就是的平分线
故选:D
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【考点】
本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.
4、C
【解析】
【分析】
根据周长的计算公式计算即可.(三角形的周长等于三边之和.)
【详解】
根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23.
【考点】
本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨论.
5、B
【解析】
【分析】
先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.
【详解】
解:如图所示,
由一副三角板的性质可知:∠ECD=60°,∠BCA=45°,∠D=90°,
∴∠ACD=∠ECD-∠BCA=60°-45°=15°,
∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,
故选:B.
【考点】
本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
二、多选题
1、BD
【解析】
【分析】
根据对顶角的概念、四边形的性质、平行线的性质以及垂直的概念进行判断.
【详解】
解:A.相等的角不一定是对顶角,而对顶角必定相等,故选项说法错误,不符合题意;
B. 一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于360°,故选项说法正确,符合题意;
C.两条平行直线被第三条直线所截,内错角相等,故选项说法错误,不符合题意;
D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故选项说法正确,符合题意;
故选:BD.
【考点】
本题主要考查了对顶角的概念、四边形的性质、平行线的性质以及垂直的概念,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于360°.
2、ABD
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。.
【详解】
解: O是正六边形ABCDE的中心,
都是等边三角形,
都不能由平移得到,可以由平移得到,
故符合题意,不符合题意;
故选:
【考点】
本题考查的是正多边形的性质,平移的定义,平移的性质,熟悉平移的含义与性质是解题的关键.
3、BCD
【解析】
【分析】
利用直线截去多边形的一个角,注意分类讨论,直线不过多边形的顶点,过一个顶点,过两个顶点,从而可得答案.
【详解】
解:一个三角形被截去一个角后,得不到五边形,故不符合题意;
如图,一个四边形被截去一个角后,可得到五边形,故符合题意;
如图,一个五边形被截去一个角后,可得到五边形,故符合题意;
如图,一个六边形被截去一个角后,可得到五边形,故符合题意;
故选:
【考点】
本题考查的是认识多边形,利用直线截去多边形的一个角所形成的新的多边形,理解截的方法是解题的关键.
4、BC
【解析】
【分析】
已知公共角∠A,根据三角形全等的判定方法对选项依次判定即可;
【详解】
解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;
B. 根据SAS判定△ACD≌△ABE,故本选项正确;
C. 根据AAS判定△ACD≌△ABE,故本选项正确;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D. 不能判定△ACD≌△ABE,故本选项错误;
故选:B、C.
【考点】
本题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.
5、AB
【解析】
【分析】
结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答.
【详解】
A、正确.可以用AAS判定两个三角形全等;如图:∠B=∠B′,∠C=∠C′,AD平分∠BAC,A′D′平分∠B′A′C′,且AD=A′D′,
∵∠B=∠B′,∠C=∠C′,
∴∠BAC=∠B′A′C′,
∵AD,A′D′分别平分∠BAC,∠B′A′C′,
∴∠BAD=∠B′A′D′
∵ ,
∴△ABD≌△A′B′D′(AAS),
∴AB=A′B′,
在△ABC和△A′B′C′中, ,
∴△ABC≌△A′B′C′(AAS).
B、正确.可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,AD,A′D′分别为、 的中线,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,
∵ ,
∴△ADC≌△EDB,
∴BE=AC,,
同理:B′E′=A′C′,,
∴BE=B′E′,AE=A′E′,
∵
∴△ABE≌△A′B′E′,
∴∠BAE=∠B′A′E′,∠E=∠E′,
∴∠CAD=∠C′A′D′,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵,
∴∠BAC=∠B′A′C′,
∵ , ,
∴△BAC≌△B′A′C′.
C、不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等.
D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等.
故选:AB.
【考点】
本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的.
三、填空题
1、40°
【解析】
【分析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.
【考点】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
2、##140度
【解析】
【分析】
如图,首先标注字母,利用三角形的内角和求解,再利用对顶角的相等,三角形的外角的性质可得答案.
【详解】
解:如图,标注字母,
由题意得:
故答案为:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【考点】
本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.
3、105°
【解析】
【分析】
利用直角三角形的两个锐角互余求得∠ABC与∠FDE的度数,然后在△MDB中,利用三角形内角和定理求得∠DMB,再依据对顶角相等即可求解.
【详解】
解:∵∠ABC=90°−∠C=90°−60°=30°,∠FDE=90°−∠F=90°−45°=45°,
∴∠DMB=180°−∠ABC−∠FDE=180°−30°−45°=105°,
∴∠CMF=∠DMB=105°.
故答案为:105°.
【考点】
本题考查了直角三角形两锐角互余、三角形的内角和定理以及对顶角的性质,正确求得∠DMB的度数是关键.
4、7.5.
【解析】
【分析】
观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解.
【详解】
如下图所示,连接,
∵,,,
∴ ,
∴,
,
∴,
,
设,,
∴ ,
,
由,可得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
解得 ,
∴,,
.
故答案为:7.5.
【考点】
本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键.
5、18
【解析】
【分析】
由题意可知F为重心,则根据重心的性质有,又△BEF与△BCF等高,S△BEF=3,立得S△BFC=6,所以S△BEC=9,最后根据三角形中线的性质求△ABC面积即可.
【详解】
解:∵△ABC的中线BD、CE相交于点F,则点F为△ABC的重心,
由重心的性质可得:,
∵△BEF与△BCF等高,S△BEF=3,
∴S△BFC=6,
则S△BEC=S△BEF+S△BFC=3+6=9,
又E为AB中点,
∴S△ABC=2S△BEC=2×9=18.
故答案为:18.
【考点】
此题考查了三角形中线的性质以及三角形重心的性质,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1.
四、解答题
1、(1)证明见解析;(2)证明见解析.
【解析】
【分析】
(1)先根据角的和差可得,再根据三角形全等的判定定理即可得证;
(2)先根据三角形全等的性质可得,再根据对顶角相等可得,然后根据三角形的内角和定理、等量代换即可得证.
【详解】
(1),
,即,
在和中,,
;
(2)由(1)已证:,
,
由对顶角相等得:,
又,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
.
【考点】
本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.
2、(1)63°;(2)107°
【解析】
【分析】
(1)根据垂直的定义可得,进而根据三角形内角和定理即可求得;
(2)根据三角形的外角的性质即可求得.
【详解】
解:(1) BC⊥AD,∠A27°,
(2)∠BED44°,
【考点】
本题考查了三角形的内角和定理与三角形的外角性质,掌握以上知识是解题的关键.
3、(1)2;(2)4
【解析】
【分析】
(1)根据题意可直接求等腰直角三角形EAC的面积即可;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解.
【详解】
(1)由题意知,
故答案为2;
(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:
FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,
∠FNK=∠FGH=90°,,
FH=FK,
又FM=FM,HM=KM=MN+GH=MN+NK,
,
MK=FN=2cm,
.
【考点】
本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.
4、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP - ∠ABP =90°-∠A.
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;
(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;
(3)按照(2)中同样的方法进行等量转换,求解即可判定.
【详解】
(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,
∠ABP+∠ACP=∠ABC+∠ACB -(∠PBC+∠PCB)=125°-90°=35度;
(2)猜想:∠ABP+∠ACP=90°-∠A;
证明:在△ABC中,∠ABC+∠ACB=180°-∠A,
∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,
∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,
∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,
又∵在Rt△PBC中,∠P=90°,
∴∠PBC+∠PCB=90°,
∴(∠ABP+∠ACP)+90°=180°-∠A,
∴∠ABP+∠ACP=90°-∠A.
(3)判断:(2)中的结论不成立.
证明:在△ABC中,∠ABC+∠ACB=180°-∠A,
∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,
∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,
又∵在Rt△PBC中,∠P=90°,
∴∠PBC+∠PCB=90°,
∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°
或∠ACP - ∠ABP =90°-∠A.
【考点】
此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.
5、见解析
【解析】
【分析】
根据,得到∠A=∠C,然后推出AF=CE,即可证明△ABF≌△CDE得到∠AFB=∠CED,则.
【详解】
解:∵,
∴∠A=∠C,
∵AE=CF,
∴AE+EF=CF+EF,即AF=CE,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在△ABF和△CDE中,
,
∴△ABF≌△CDE(SAS),
∴∠AFB=∠CED,
∴.
【考点】
本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.
相关试卷
这是一份综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案解析),共27页。
这是一份综合解析-人教版数学八年级上册期中定向攻克试题 卷(Ⅱ)(含答案及解析),共24页。
这是一份综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(详解版),共23页。试卷主要包含了如图,已知.能直接判断的方法是等内容,欢迎下载使用。