年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    综合解析人教版数学八年级上册期中定向测试试题 卷(Ⅰ)(含答案及详解)

    综合解析人教版数学八年级上册期中定向测试试题 卷(Ⅰ)(含答案及详解)第1页
    综合解析人教版数学八年级上册期中定向测试试题 卷(Ⅰ)(含答案及详解)第2页
    综合解析人教版数学八年级上册期中定向测试试题 卷(Ⅰ)(含答案及详解)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    综合解析人教版数学八年级上册期中定向测试试题 卷(Ⅰ)(含答案及详解)

    展开

    这是一份综合解析人教版数学八年级上册期中定向测试试题 卷(Ⅰ)(含答案及详解),共24页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 35分)
    一、单选题(5小题,每小题3分,共计15分)
    1、将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则的度数是( )
    A.B.C.D.
    2、如图,在中,,是的平分线,若,,则 ( )
    A.B.C.D.
    3、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有( )
    A.①②③B.①②④C.①③④D.①②③④
    4、用直角三角板作△ABC的边AB上的高,下列直角三角板位置摆放正确的是( )
    A.B.
    C.D.
    5、如图,已知在四边形中,,平分,,,,则四边形的面积是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.24B.30C.36D.42
    二、多选题(5小题,每小题4分,共计20分)
    1、如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中正确的是( )
    A.△AOD≌△BOCB.△APC≌△BPDC.点P在∠AOB的平分线上D.CP=DP
    2、下列多边形中,外角和为360°的有( )
    A.三角形B.四边形C.六边形D.十八边形
    3、(多选)如图,在中,,,分别为边,上的点,平分,于点,为的中点,延长交于点,则下列判断中正确的结论有( )
    A.线段是的高B.与面积相等
    C.D.
    4、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是( )
    A.12米B.10米C.15米D.8米
    5、下列作图语句不正确的是( )
    A.作射线AB,使AB=aB.作∠AOB=∠a
    C.延长直线AB到点C,使AC=BCD.以点O为圆心作弧
    第Ⅱ卷(非选择题 65分)
    三、填空题(5小题,每小题5分,共计25分)
    1、已知三角形的三边长为4、x、11,化简______.
    2、已知△ABC,∠A=80°,BF平分外角∠CBD,CF平分外角∠BCE,BG平分∠CBF,CG平分外角∠BCF,则∠G=______°.
    3、将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
    4、如图,伸缩晾衣架利用的几何原理是四边形的_______________.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、如图所示,的两条角平分线相交于点,过点作EFBC,交于点,交于点,若的周长为,则______cm.
    四、解答题(5小题,每小题8分,共计40分)
    1、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.
    2、如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.
    3、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
    (1)求△ABC的面积;
    (2)求AD的长.
    4、如图所示,在三角形ABC中,,,作的平分线与AC交于点E,求证:.
    5、如图,已知在中,,AD是BC边上的高,AE是的平分线,求证:.
    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    根据题意求出、,根据对顶角的性质、三角形的外角性质计算即可.
    【详解】
    由题意得,,

    由三角形的外角性质可知,,
    故选C.
    【考点】
    本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
    2、A
    【解析】
    【分析】
    过点D作于点E,根据角平分线的性质得 ,DE=DC再根据三角形面积公式即可求解.
    【详解】
    解:过点D作于点E,
    在中,

    是的平分线,


    ,,

    故答案为:A.
    【考点】
    本题考查了角平分线的性质,三角形的面积,正确理解角平分线的性质是解本题的关键.
    3、D
    【解析】
    【分析】
    证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.
    【详解】
    解:∵∠BAF=∠CAG=90°,
    ∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,
    又∵AB=AF=AC=AG,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴△CAF≌△GAB(SAS),
    ∴BG=CF,故①正确;
    ∵△FAC≌△BAG,
    ∴∠FCA=∠BGA,
    又∵BC与AG所交的对顶角相等,
    ∴BG与FC所交角等于∠GAC,即等于90°,
    ∴BG⊥CF,故②正确;
    过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,
    ∵∠FMA=∠FAB=∠ADB=90°,
    ∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,
    ∴∠BAD=∠AFM,
    又∵AF=AB,
    ∴△AFM≌△BAD(AAS),
    ∴FM=AD,∠FAM=∠ABD,
    故③正确,
    同理△ANG≌△CDA,
    ∴NG=AD,
    ∴FM=NG,
    ∵FM⊥AE,NG⊥AE,
    ∴∠FME=∠ENG=90°,
    ∵∠AEF=∠NEG,
    ∴△FME≌△GNE(AAS).
    ∴EF=EG.
    故④正确.
    故选:D.
    【考点】
    本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.
    4、D
    【解析】
    【分析】
    从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高,根据高线的定义即可得出结论.
    【详解】
    解:A、作出的是△ABC中BC边上的高线,故本选项错误;
    B、作出的是△ABC中AC边上的高线,故本选项错误;
    C、不能作出△ABC中BC边上的高线,故本选项错误;
    D、作出的是△ABC中AB边上的高线,故本选项正确;
    故选D.
    【考点】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.
    5、B
    【解析】
    【分析】
    过D作DE⊥AB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论.
    【详解】
    如图,过D作DE⊥AB交BA的延长线于E,
    ∵BD平分∠ABC,∠BCD=90°,
    ∴DE=CD=4,
    ∴四边形的面积
    故选B.
    【考点】
    本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.
    二、多选题
    1、ABCD
    【解析】
    【分析】
    根据题中条件,由两边夹一角可得△AOD≌△BOC,得出对应角相等,又由已知得出AC=BD,可得△APC≌△BPD,同理连接OP,可证△AOP≌△BOP,进而可得出结论.
    【详解】
    解:∵OA=OB,OC=OD,∠AOB为公共角,
    ∴△AOD≌△BOC,
    ∴∠A=∠B,
    又∠APC=∠BPD,
    ∴∠ACP=∠BDP,
    OA-OC=OB-OD,即AC=BD,
    ∴△APC≌△BPD,
    ∴AP=BP,CP=DP,
    连接OP,
    即可得△AOP≌△BOP,得出∠ AOP=∠ BOP,
    ∴点P在∠AOB的平分线上.
    故答案选:ABCD
    【考点】
    本题主要考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等的判定和性质.
    2、ABCD
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【解析】
    【分析】
    多边形的外角和为360°,与边数无关,即可得到答案.
    【详解】
    解:多边形的外角和为360°,
    故答案为:ABCD.
    【考点】
    本题考查多边形的外角和,掌握多边形的外角和为360°且与边数无关是解题的关键.
    3、BCD
    【解析】
    【分析】
    根据三角形的高线、中线的性质及全等三角形与三角形内角和定理依次进行判断即可得出结果.
    【详解】
    解:∵CE⊥AD,
    ∴∆ACE的高是AF,不是AD,
    ∴选项A不符合题意;
    ∵G为AD中点,
    ∴BG是∆ABD的中线,
    ∴∆ABG与∆BDG面积相等,
    ∴选项B符合题意;
    ∵AD平分∠BAC,CE⊥AD,
    ∴∠EAF=∠CAF,∠AFE=∠AFC=90°,
    在∆AFE与∆AFC中,

    ∴∆AFE≅∆AFC,
    ∴AE=AC,∠AEC=∠ACE,
    ∵AB-AE=BE,
    ∴AB-AC=BE,
    ∴选项D符合题意;
    ∵∠AEC=∠CBE+∠BCE,
    ∴∠ACE=∠CBE+∠BCE,
    ∵∠CAD+∠ACE=90°,
    ∴∠CAD+∠CBE+∠BCE=90°,
    ∴选项C符合题意,
    故选:BCD.
    【考点】
    题目主要考查全等三角形的判定和性质,三角形内角和定理及三角形的基本性质,熟练掌握全等三角形与三角形的基本性质是解题关键.
    4、ABD
    【解析】
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    根据三角形的三边之间的关系逐一判断即可得到答案.
    【详解】
    解:中,
    <<
    <<
    符合题意,不符合题意;
    故选:
    【考点】
    本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.
    5、ACD
    【解析】
    【分析】
    根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;.
    【详解】
    解:A、射线是不可度量的,故本选项错误;
    B、∠AOB=∠α,故本选项正确;
    C、直线向两方无限延伸没有延长线,故本选项错误;
    D、需要说明半径的长,故选项错误.
    故选:ACD.
    【考点】
    本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质.
    三、填空题
    1、11
    【解析】
    【分析】
    根据三角形三边关系可求出x的取值范围,即可求解.
    【详解】
    ∵三角形的三边为4、x、11,
    ∴11-4<x<11+4,
    ∴,
    ∴,
    故答案为:11.
    【考点】
    本题主要考查了构成三角形三边大小的关系和去绝对值的知识,利用三角形三边关系求出x的取值范围是解答本题的关键.
    2、115
    【解析】
    【分析】
    由三角形外角的性质即三角形的内角和定理可求解∠DBC+∠ECB=260°,再利用角平分线的定义可求解∠FBC+∠FCB=130°,即可得∠GBC+∠GCB=65°,再利用三角形内角和定理可求解.
    【详解】
    解:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
    ∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵∠ACB+∠A+∠ABC=180°,
    ∴∠DBC+∠ECB=∠A+180°=80°+180°=260°,
    ∵BF平分外角∠DBC,CF平分外角∠ECB,
    ∴∠FBC=∠DBC,∠FCB=∠ECB,
    ∴∠FBC+∠FCB=(∠DBC+∠ECB)=130°,
    ∵BG平分∠CBF,CG平分∠BCF,
    ∴∠GBC=∠FBC,∠GCB=∠FCB,
    ∴∠GBC+∠GCB=(∠FBC+∠FCB)=65°,
    ∴∠G=180°-(∠GBC-∠GCB)=180°-65°=115°.
    故答案为:115.
    【考点】
    本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的定义,求解∠FBC+∠FCB=130°是解题的关键.
    3、40°
    【解析】
    【分析】
    直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
    【详解】
    如图所示:
    ∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
    ∵∠1+∠2+∠3+∠4=220°,
    ∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
    ∴∠6+∠7=140°,
    ∴∠5=180°-(∠6+∠7)=40°.
    故答案为40°.
    【考点】
    主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
    4、灵活性.
    【解析】
    【分析】
    根据四边形的灵活性,可得答案.
    【详解】
    我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性,
    故答案为灵活性.
    【考点】
    此题考查多边形,解题关键在于掌握四边形的灵活性.
    5、30
    【解析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    利用平行线的性质和角平分线的定义得到,证出,同理,则的周长即为,可得出答案.
    【详解】
    解:,

    平分,

    同理:,

    故答案为:.
    【考点】
    本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出,是解题的关键.
    四、解答题
    1、2
    【解析】
    【分析】
    延长至点,使,连接,证明推出,,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.
    【详解】
    解:如图,延长至点,使,连接.
    ∵是等边三角形,
    ∴.
    ∵,,
    ∴,
    ∴,
    ∴.
    在和中,,
    ∴,
    ∴,.
    ∵,,
    ∴,
    ∴,
    ∴.
    在和中,,
    ∴,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,
    ∴的周长.
    【考点】
    此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.
    2、见解析
    【解析】
    【分析】
    利用SSS证明△ABC≌△DCB,根据全等三角形的性质可得∠ABC=∠DCB,再由SAS定理证明△ABE≌△CED,即可证得AE=DE.
    【详解】
    证明:在△ABC和△DCB中,

    ∴△ABC≌△DCB(SSS).
    ∴∠ABC=∠DCB.
    在△ABE和△DCE中,

    ∴△ABE≌△DCE(SAS).
    ∴AE=DE.
    【考点】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    3、(1)27;(2)4.5
    【解析】
    【分析】
    (1)根据三角形面积公式进行求解即可;
    (2)利用面积法进行求解即可.
    【详解】
    解:(1)由题意得:.
    (2)∵,
    ∴.
    解得.
    【考点】
    本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.
    4、见解析
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【解析】
    【分析】
    由于BC,AE和BE没在一条线上,不能进行比较;故在BC上截取AE和BE,然后根据等腰三角形、角平分线的知识即可发现全等三角形,证明边的相等关系,最后运用线段的和差关系,即可完成证明.
    【详解】
    证明:如图
    在上截取,连结.
    在上截取,连结.
    ,,平分,
    ,,

    ,,
    ,,



    又,,




    【考点】
    本题考查了等腰三角形的性质,在进行线段比较的题目中,可以采用截取法,让它们位于一条直线上,以方便比较.
    5、证明见解析.
    【解析】
    【详解】
    试题分析:根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°-∠B,再根据AE平分∠BAC,求得∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,最后根据∠DAE=∠BAE-∠BAD即可求解.
    试题解析:∵AD是BC边上的高,
    ∴∠BAD=90°-∠B.
    ∵AE平分∠BAC,
    ∴∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C.
    ∵∠DAE=∠BAE-∠BAD,
    ∴∠DAE=(90°-∠B-∠C)-(90°-∠B)=∠B-∠C=(∠B-∠C).

    相关试卷

    综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解):

    这是一份综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解),共27页。试卷主要包含了下列说法中错误的是等内容,欢迎下载使用。

    综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解):

    这是一份综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解),共25页。

    综合解析人教版数学八年级上册期中定向攻克试题 卷(Ⅱ)(含答案详解):

    这是一份综合解析人教版数学八年级上册期中定向攻克试题 卷(Ⅱ)(含答案详解),共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map