综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解)
展开
这是一份综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含答案详解),共27页。试卷主要包含了下列说法中错误的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、如图,在梯形中,,,,那么下列结论不正确的是( )
A.B.
C.D.
2、如图,在中,,分别是,边上的中线,且与相交于点,则的值为( )
A.B.C.D.
3、如图,B,C,E,F四点在一条直线上,下列条件能判定与全等的是( )
A.B.
C.D.
4、下列说法中错误的是( )
A.三角形的一个外角大于任何一个内角
B.有一个内角是直角的三角形是直角三角形
C.任意三角形的外角和都是
D.三角形的中线、角平分线,高线都是线段
5、两个直角三角板如图摆放,其中,,,AB与DF交于点M.若,则的大小为( )
A.B.C.D.
二、多选题(5小题,每小题4分,共计20分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、如图,,,要添加一个条件使.添加的条件可以是( )
A.B.C.D.
2、如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )
A.∠E=∠FB.EC=BFC.AB=CDD.AB=BC
3、如图,下列条件中,能证明的是( )
A.,B.,
C.,D.,
4、关于多边形,下列说法中正确的是( )
A.过七边形一个顶点可以作4条对角线B.边数越多,多边形的外角和越大
C.六边形的内角和等于720°D.多边形的内角中最多有3个锐角
5、下列命题中是假命题的有( )
A.形状相同的两个三角形是全等形;
B.在两个三角形中,相等的角是对应角,相等的边是对应边;
C.全等三角形对应边上的高、中线及对应角平分线分别相等
D.如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.则DE=________.
2、如图,是的中线,点F在上,延长交于点D.若,则______.
3、如图,AD 是△ABC 的中线,BE 是△ABD 的中线, EF BC 于点 F.若,BD 4 ,则 EF 长为___________.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、如图,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,AD与CE相交于点F,若,,,则________.
5、如图,则∠A+∠B+∠C+∠D+∠E的度数是__.
四、解答题(5小题,每小题8分,共计40分)
1、某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.
【探究与发现】
(1)如图1,AD是的中线,延长AD至点E,使,连接BE,证明:.
【理解与应用】
(2)如图2,EP是的中线,若,,设,则x的取值范围是________.
(3)如图3,AD是的中线,E、F分别在AB、AC上,且,求证:.
2、在中,BE,CD为的角平分线,BE,CD交于点F.
(1)求证:;
(2)已知.
①如图1,若,,求CE的长;
②如图2,若,求的大小.
3、如图,点A,F,E,D在一条直线上,AF=DE,CF∥BE,AB∥CD.求证BE=CF.
4、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求△ABC的面积;
(2)求AD的长.
5、如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且.连接.
(1)求证:;
(2)如图,若,,则的面积为________.
-参考答案-
一、单选题
1、A
【解析】
【分析】
A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出∠ADB=90°,从而得出B正确;C、由梯形的性质得出AB∥CD,结合角的计算即可得出∠ABC=60°,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出∠DAC=∠CAB,即D正确.综上即可得出结论.
【详解】
A、∵AD=DC,
∴AC<AD+DC=2CD,
故A不正确;
B、∵四边形ABCD是等腰梯形,
∴∠ABC=∠BAD,
在△ABC和△BAD中,
,
∴△ABC≌△BAD(SAS),
∴∠BAC=∠ABD,
∵AB∥CD,
∴∠CDB=∠ABD,∠ABC+∠DCB=180°,
∵DC=CB,
∴∠CDB=∠CBD=∠ABD=∠BAC,
∵∠ACB=90°,
∴∠CDB=∠CBD=∠ABD=30°,
∴∠ABC=∠ABD+∠CBD=60°,B正确,
C、∵AB∥CD,
∴∠DCA=∠CAB,
∵AD=DC,
∴∠DAC=∠DCA=∠CAB,C正确.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
D、∵△DAB≌△CBA,
∴∠ADB=∠BCA.
∵AC⊥BC,
∴∠ADB=∠BCA=90°,
∴DB⊥AD,D正确;
故选:A.
【考点】
本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误.本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可.
2、A
【解析】
【分析】
根据三角形的重心性质得到,根据三角形的面积公式得到,,据此解题.
【详解】
解:点是,边上的中线,的交点,
,,
,,
,
,
故选:.
【考点】
本题考查三角形重心的概念与性质、三角形面积等知识,是重要考点,掌握相关知识是解题关键.
3、A
【解析】
【分析】
根据全等三角形的判定条件逐一判断即可.
【详解】
解:A、∵,
∴,
∵,
∴,即
在和中
∵
∴,故A符合题意;
B、∵,∴,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;
C、∵,∴,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;
D、∵,∴,,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;
故选A.
【考点】
本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、A
【解析】
【分析】
根据三角形的性质判断选项的正确性.
【详解】
A选项错误,钝角三角形的钝角的外角小于内角;
B选项正确;
C选项正确;
D选项正确.
故选:A.
【考点】
本题考查三角形的性质,解题的关键是掌握三角形的各种性质.
5、C
【解析】
【分析】
根据,可得再根据三角形内角和即可得出答案.
【详解】
由图可得
∵,
∴
∴
故选:C.
【考点】
本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.
二、多选题
1、BD
【解析】
【分析】
已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS、ASA或SAS判定两个三角形全等.
【详解】
解:选项A中与不是对应角,不能与已知构成AAS或ASA的判定,无法判定三角形全等,故选项A不合题意;
选项B中是对应角,结合已知可以由AAS判定,故选项B符合题意;
选项C中是对应边,但不是两边及其夹角相等,无法判定,故选项C不合题意;
选项B中由已知可得,是对应角,结合已知可以由ASA判定,故选项D符合题意;
故选BD.
【考点】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:、、、、.注意:、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
2、AC
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.
【详解】
解:∵AE∥DF,
∴∠A=∠D,
∵AE=DF,
∴要使△EAC≌△FDB,还需要AC=BD或∠E=∠F或∠ACE=∠DBF,
∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,选项A、C符合, B、D不符合.
故选:AC.
【考点】
本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
3、ABC
【解析】
【分析】
根据全等三角形的判定方法一一判断即可.
【详解】
解:A.由,,,根据可以证明,本选项符合题意;
B.由,,根据能判断三角形全等,本选项符合题意;
C.由,推出,因为,,根据可以证明,本选项符合题意;
D.由,,,根据不可以证明,本选项不符合题意;
故选:.
【考点】
本题考查全等三角形的判定和性质,等腰三角形的性质等知识,熟练掌握全等三角形的判定方法是解题的关键.
4、ACD
【解析】
【分析】
根据多边形的内角和、外角和,多边形的内角线,即可解答.
【详解】
解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;
B、多边形的外角和是固定不变的,选项错误,不符合题意;
C、六边形的内角和等于720°,选项正确,符合题意;
D、多边形的内角中最多有3个锐角,选项正确,符合题意;
故选:ACD
【考点】
本题考查了多边形,解决本题的关键是熟记多边形的有关性质.
5、ABD
【解析】
【分析】
利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项.
【详解】
解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;
B、在两个全等三角形中,相等的角是对应角,相等的边是对应边,原命题是假命题,符合题意;
C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;
D、如果两个三角形都和第三个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:ABD.
【考点】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
三、填空题
1、1
【解析】
【分析】
先证明△ACD≌△CBE,再求出DE的长,解决问题.
【详解】
解:∵BE⊥CE于E,AD⊥CE于D
∴
∵
∴
∵
∴
∴,
∴.
故答案为:1
【考点】
此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键.
2、
【解析】
【分析】
连接ED,由是的中线,得到,,由,得到,设,由面积的等量关系解得,最后根据等高三角形的性质解得,据此解题即可.
【详解】
解:连接ED
是的中线,
,
设,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
与是等高三角形,
,
故答案为:.
【考点】
本题考查三角形的中线、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.
3、3
【解析】
【分析】
因为S△ABD=S△ABC,S△BDE=S△ABD;所以S△BDE=S△ABC,再根据三角形的面积公式求得即可.
【详解】
解:∵AD是△ABC的中线,S△ABC=24,
∴S△ABD=S△ABC=12,
同理,BE是△ABD的中线,,
∵S△BDE=BD•EF,
∴BD•EF=6,
即
∴EF=3.
故答案为:3.
【考点】
此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.
4、123
【解析】
【分析】
根据折叠前后对应角相等和三角形内角和定理可得∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,再求出∠DAC,根据三角形外角的性质可求得m.
【详解】
解:∵,,
∴∠BAC=180°-18°-29°=133°,
∵沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,
∴∠BAD=∠BAC=133°,∠ACE=∠ACB=29°,
∴∠DAC=360°-∠BAD-∠BAC=94°,
∴∠CFD=∠ACE+∠DAC=29°+94°=123°,即m=123,
故答案为:123.
【考点】
本题考查三角形内角和定理和外角定理,折叠的性质.理解折叠前后对应角相等是解题关键.
5、180°
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.
【详解】
解:如图可知:
∵∠4是三角形的外角,
∴∠4=∠A+∠2,
同理∠2也是三角形的外角,
∴∠2=∠D+∠C,
在△BEG中,∵∠B+∠E+∠4=180°,
∴∠B+∠E+∠A+∠D+∠C=180°.
故答案为:180°.
【考点】
本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.
四、解答题
1、(1)见解析;(2);(3)见解析
【解析】
【分析】
(1)根据全等三角形的判定即可得到结论;
(2)延长至点,使,连接,根据全等三角形的性质得到,根据三角形的三边关系即可得到结论;
(3)延长FD至G,使得,连接BG,EG,结合前面的做题思路,利用三角形三边关系判断即可.
【详解】
(1)证明:,,,
,
(2);
如图,延长至点,使,连接,
在与中,
,
,
,
在中,,
即,
的取值范围是;
故答案为:;
(3)延长FD至G,使得,连接BG,EG,
在和中,,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,,
在和中,
,,,
,,
在中,两边之和大于第三边
,,
又,,
【考点】
本题考查了全等三角形的判定和性质,三角形的中线的定义,三角形的三边关系,正确的作出图形是解题的关键.
2、(1)证明见解析;(2)2.5;(3)100°.
【解析】
【分析】
(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,
(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;
(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.
【详解】
解:(1)、分别是与的角平分线,
,
,
,
(2)如解(2)图,在BC上取一点G使BG=BD,
由(1)得,
,
,
∴,
在与中,
,
∴(SAS)
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴,
∴
在与中,
,
,
,
,
;
∵,,
∴
(3)如解(3)图,延长BA到P,使AP=FC,
,
∴,
在与中,
,
∴(SAS)
∴,,
∴,
又∵,
∴,
又∵,
∴,
∴,,
∴,
【考点】
本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.
3、证明见解析.
【解析】
【分析】
根据线段的和差关系可得AE=DF,根据平行线的性质可得∠D=∠A,∠CFD=∠BEA,利用ASA可证明△ABE≌△DCF,根据全等三角形的性质即可得结论.
【详解】
∵AF=DE,
∴AF+EF=DE+EF,即AE=DF,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵AB//CD,
∴∠D=∠A,
∵CF//BE,
∴∠CFD=∠BEA,
在△ABE≌△DCF中,,
∴△ABE≌△DCF,
∴BE=CF.
【考点】
本题考查平行线的性质及全等三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.
4、(1)27;(2)4.5
【解析】
【分析】
(1)根据三角形面积公式进行求解即可;
(2)利用面积法进行求解即可.
【详解】
解:(1)由题意得:.
(2)∵,
∴.
解得.
【考点】
本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.
5、(1)见解析;(2).
【解析】
【分析】
(1)易证∠ADE=∠CDF,即可证明△ADE≌△CDF;
(2)由(1)可得AE=CF,BE=AF,,再根据△DEF的面积=,即可解题.
【详解】
(1)证明:∵AB=AC,D是BC中点,
∴∠BAD=∠C=45°,AD=BD=CD,
∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
∴△ADE≌△CDF(ASA).
(2)解:∵△ADE≌△CDF
∴AE=CF=5,BE=AF=12,AB=AC=17,
∴
∴
∴△DEF的面积=.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【考点】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE≌△CDF是解题的关键.
相关试卷
这是一份综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(详解版),共29页。试卷主要包含了如图,锐角△ABC的两条高BD等内容,欢迎下载使用。
这是一份综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含详解),共28页。试卷主要包含了下列图形为正多边形的是等内容,欢迎下载使用。
这是一份综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含详解),共21页。