所属成套资源:2024年新高考数学押题密卷2024年新高考数学二轮复习微专题提分突破140分
2024年新高考数学押题密卷(一)(原卷及解析版)
展开
这是一份2024年新高考数学押题密卷(一)(原卷及解析版),文件包含2024年新高考数学押题密卷一原卷版docx、2024年新高考数学押题密卷一解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,,则图中阴影部分表示的集合为( )
A.B.
C.D.
2.已知两条不同的直线,表示三个不同的平面,则下列说法正确的是( )
A.B.与平行或相交
C. D.
3.已知一组数据:12,16,22,24,25,31,33,35,45,若去掉12和45,将剩下的数据与原数据相比,则( )
A.极差不变B.平均数不变C.方差不变D.上四分位数不变
4.设圆和不过第三象限的直线,若圆上恰有三点到直线的距离为,则实数( )
A.2B.4C.26D.41
5.在工程中估算平整一块矩形场地的工程量W(单位:平方米)的计算公式是,在不测量长和宽的情况下,若只知道这块矩形场地的面积是10000平方米,每平方米收费1元,请估算平整完这块场地所需的最少费用(单位:元)是( )
A.10000B.10480C.10816D.10818
6.已知的内角A,B,C的对边分别为,则能使同时满足条件的三角形不唯一的a的取值范围是( )
A.B.C.D.
7.在平面直角坐标系中,已知双曲线:的右焦点为,P为C上一点,以为直径的圆与C的两条渐近线相交于异于点O的M,N两点.若,则C的离心率为( )
A.B.C.D.
8.定义,对于任意实数,则的值是( )
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.设,是关于的方程的两根,其中,.若为虚数单位,则
( )
A.B.C.D.
10.已知函数(),则下列说法正确的是( )
A.若,则是的图像的对称中心
B.若恒成立,则的最小值为2
C.若在上单调递增,则
D.若在上恰有2个零点,则
11.设是定义在上的可导函数,其导数为,若是奇函数,且对于任意的,,则对于任意的,下列说法正确的是( )
A.都是的周期B.曲线关于点对称
C.曲线关于直线对称D.都是偶函数
第二部分(非选择题 共92分)
三、填空题:本题共3小题,每小题5分,共15分。
12.在的展开式中,的系数为 .
13.向量满足,,,则的最大值为 .
14.球面被平面所截得的一部分叫做球冠,截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺是旋转体,可以看做是球冠和其底所在的圆面所围成的几何体.如图1,一个球面的半径为,球冠的高是,球冠的表面积公式是,与之对应的球缺的体积公式是.如图2,已知是以为直径的圆上的两点,,则扇形绕直线旋转一周形成的几何体的表面积为 ,体积为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
15.(13分)
已如曲线在处的切线与直线垂直.
(1)求的值;
(2)若恒成立,求的取值范围.
16.(15分)
如图,在四棱锥中,底面为矩形,面,点是的中点.
(1)证明:;
(2)设的中点为,点在棱上(异于点),且,求直线与平面所成角的余弦值.
17.(15分)
直播带货是一种直播和电商相结合的销售手段,目前已被广大消费者所接受.针对这种现状,某公司决定逐月加大直播带货的投入,直播带货金额稳步提升,以下是该公司2023年前5个月的带货金额的统计表(金额(万元)).
(1)根据统计表,
①求该公司带货金额的平均值;
②求该公司带货金额与月份编号的样本相关系数(精确到0.01),并判断它们是否具有线性相关关系(,则认为与的线性相关性较强;,则认为与的线性相关性较弱);
(2)该公司现有一个直播间销售甲、乙两种产品.为对产品质量进行监控,质检人员先用简单随机抽样的方法从甲、乙两种产品中分别抽取了5件、3件产品进行初检,再从中随机选取3件做进一步的质检,记抽到甲产品的件数为,试求的分布列与期望.
附:相关系数公式,参考数据:,,,.
18.(17分)
已知椭圆离心率为,椭圆上的点到焦点的最远距离是.
(1)求椭圆的方程;
(2)椭圆上有四个动点,,,,且与相交于点.
①若点的坐标为,为椭圆的上顶点,为椭圆的右顶点,求的斜率;
②若直线与的斜率均为时,求直线的斜率.
19.(17分)
数列满足:是等比数列,,且.
(1)求;
(2)求集合中所有元素的和;
(3)对数列,若存在互不相等的正整数,使得也是数列中的项,则称数列是“和稳定数列”.试分别判断数列是否是“和稳定数列”.若是,求出所有的值;若不是,说明理由.
月份
1月
2月
3月
4月
5月
月份编号
1
2
3
4
5
金额(万元)
7
12
13
19
24
相关试卷
这是一份2024年新高考数学押题密卷(三)(原卷及解析版),文件包含2024年新高考数学押题密卷三原卷版docx、2024年新高考数学押题密卷三解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份2024年新高考数学押题密卷(二)(原卷及解析版),文件包含2024年新高考数学押题密卷二原卷版docx、2024年新高考数学押题密卷二解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份2023年新高考Ⅰ卷高考数学考前押题密卷,共13页。