高考数学解答题规范专题练 (含答案)
展开
这是一份高考数学解答题规范专题练 (含答案),共12页。试卷主要包含了O是坐标原点,椭圆C等内容,欢迎下载使用。
问题:已知锐角△ABC的内角A,B,C的对边分别为a,b,c,且满足________.
(1)求A;
(2)若a=4,求b+c的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·襄阳四中模拟)设正项数列{an}的前n项和为Sn,已知a3=5,且aeq \\al(2,n+1)=4Sn+4n+1.
(1)求{an}的通项公式;
(2)若bn=eq \f(-1n·2n,anan+1),求数列{bn}的前n项和Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
3.(2023·天津模拟)O是坐标原点,椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,点M在椭圆上,当△MF1F2的面积最大时,∠F1MF2=120°且最大面积为2eq \r(3).
(1)求椭圆C的标准方程;
(2)直线l:x=2与椭圆C在第一象限交于点N,点A是第四象限内的点且在椭圆C上,线段AB被直线l垂直平分,直线NB与椭圆交于另一点D,求证:ON∥AD.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
4.(2023·浙江联考)如图1,在矩形ABCD中,AB=2,BC=1,E是DC的中点,将△DAE沿AE折起,使得点D到达点P的位置,且PB=PC,如图2所示.F是棱PB上的一点.
(1)若F是棱PB的中点,求证:CF∥平面PAE;
(2)是否存在点F,使得平面AEF与平面AEC的夹角的余弦值为eq \f(4\r(17),17)?若存在,则求出eq \f(PF,FB)的值;若不存在,请说明理由.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
5.(2023·长沙模拟)盲盒是指消费者不能提前得知具体产品款式的玩具盒子,具有随机属性.某品牌推出2款盲盒套餐,A款盲盒套餐包含4款不同单品,且必包含隐藏款X;B款盲盒套餐包含2款不同单品,有50%的可能性出现隐藏款X.为避免盲目购买与黄牛囤积,每人每天只能购买1件盲盒套餐,开售第二日,销售门店对80名购买了套餐的消费者进行了问卷调查,得到如下数据:
(1)依据小概率值α=0.01的独立性检验,能否认为A,B款盲盒套餐的选择与年龄有关联?
(2)甲、乙、丙三人每人购买1件B款盲盒套餐,记随机变量ξ为其中隐藏款X的个数,求ξ的分布列和均值;
(3)某消费者在开售首日与次日分别购买了A款盲盒套餐与B款盲盒套餐各1件,并将6件单品全部打乱放在一起,从中随机抽取1件打开后发现为隐藏款X,求该隐藏款来自于B款盲盒套餐的概率.
附:χ2=eq \f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
6.已知函数f(x)=ex-ax+sin x-1.
(1)当a=2时,求函数f(x)的单调区间;
(2)当1≤af′(0)=2-a>0,
∴f(x)在(0,+∞)上单调递增,
∴f(x)>f(0)=0,此时f(x)在(0,+∞)上无零点.
②当x∈(-∞,-π]时,-ax≥π,
有f(x)=ex-ax+sin x-1≥ex+π+sin x-1>0,
此时f(x)在(-∞,-π]上无零点.
③当x∈(-π,0)时,sin x0,
∴f′(x)在(-π,0)上单调递增,
又f′(0)=2-a>0,f′(-π)=e-π-1-a0,f(x0)
相关试卷
这是一份专题一 规范答题1 函数与导数--2024年高考数学复习二轮讲义,共3页。
这是一份新高考数学二轮复习 第1部分 专题3 规范答题3 数 列(含解析),共1页。
这是一份新高考数学二轮复习 第1部分 专题1 规范答题1 函数与导数(含解析),共2页。