高考数学解答题规范专题练 (含答案)
展开
这是一份高考数学解答题规范专题练 (含答案),共11页。试卷主要包含了已知函数f=xex+ax2,已知点M为圆O等内容,欢迎下载使用。
(1)求B和b的值;
(2)求AC边上高的最大值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·潍坊模拟)如图,在三棱台ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,将梯形AA1C1C绕AA1旋转至梯形AA1D1D的位置,二面角D1-AA1-C1的大小为30°.
(1)证明:A1,B1,C1,D1四点共面,且A1D1⊥平面ABB1A1;
(2)若AA1=A1C1=2AB=4,设G为DD1的中点,求直线BB1与平面AB1G所成的角的正弦值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
3.(2023·深圳模拟)已知函数f(x)=xex+ax2(a∈R).
(1)当a=-eq \f(1,2)时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数g(x)=xln x+xex-f(x)有两个极值点,求实数a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
4.(2023·杭州第二中学模拟)数列{an}满足a1=1,a2=2,3an=an-1+2an-2,n≥3,n∈N*.
(1)求{an}的通项公式;
(2)若λ≠0,eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))n>eq \f(an-\f(8,5),λ)恒成立,求λ的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
5.(2023·广东深圳中学模拟)某制药公司研制了一款针对某种病毒的新疫苗.该病毒一般通过病鼠与白鼠之间的接触传染,现有n只白鼠,每只白鼠在接触病鼠后被感染的概率为eq \f(1,2),被感染的白鼠数用随机变量X表示,假设每只白鼠是否被感染之间相互独立.
(1)若P(X=5)=P(X=95),求均值E(X);
(2)接种疫苗后的白鼠被病鼠感染的概率为p(0
相关试卷
这是一份专题一 规范答题1 函数与导数--2024年高考数学复习二轮讲义,共3页。
这是一份新高考数学二轮复习 第1部分 专题1 规范答题1 函数与导数(含解析),共2页。
这是一份高中数学高考第1部分 板块2 核心考点突破拿高分 专题1 规范答题示例1,共2页。