备战2024届江苏新高考数学解答题专项限时训练卷(六)
展开1.(本题13分)已知函数.
(1)当时,求的单调区间;
(2)讨论极值点的个数.
2.(本题15分)如图,在四棱锥中,底面为正方形,平面与底面所成的角为,为的中点.
(1)求证:平面;
(2)若为的内心,求直线与平面所成角的正弦值.
3.(本题15分)联合国新闻部将我国农历二十四节气中的“谷雨”定为联合国中文日,以纪念“中华文字始祖”仓颉的贡献.某大学拟在2024年的联合国中文日举行中文知识竞赛决赛,决赛分为必答、抢答两个环节依次进行.必答环节,共2道题,答对分别记30分、40分,否则记0分;抢答环节,包括多道题,设定比赛中每道题必须进行抢答,抢到并答对者得15分,抢到后未答对,对方得15分;两个环节总分先达到或超过100分者获胜,比赛结束.已知甲、乙两人参加决赛,且在必答环节,甲答对两道题的概率分别,乙答对两道题的概率分别为,在抢答环节,任意一题甲、乙两人抢到的概率都为,甲答对任意一题的概率为,乙答对任意一题的概率为,假定甲、乙两人在各环节、各道题中答题相互独立.
(1)在必答环节中,求甲、乙两人得分之和大于100分的概率;
(2)在抢答环节中,求任意一题甲获得15分的概率;
(3)若在必答环节甲得分为70分,乙得分为40分,设抢答环节经过X道题抢答后比赛结束,求随机变量X的分布列及数学期望.
4.(本题17分)已知O为坐标原点,点W为:和的公共点,,与直线相切,记动点M的轨迹为C.
(1)求C的方程;
(2)若,直线与C交于点A,B,直线与C交于点,,点A,在第一象限,记直线与的交点为G,直线与的交点为H,线段AB的中点为E.
①证明:G,E,H三点共线;
②若,过点H作的平行线,分别交线段,于点,,求四边形面积的最大值.
5.(本题17分)置换是代数的基本模型,定义域和值域都是集合的函数称为次置换.满足对任意的置换称作恒等置换.所有次置换组成的集合记作.对于,我们可用列表法表示此置换:,记.
(1)若,计算;
(2)证明:对任意,存在,使得为恒等置换;
(3)对编号从1到52的扑克牌进行洗牌,分成上下各26张两部分,互相交错插入,即第1张不动,第27张变为第2张,第2张变为第3张,第28张变为第4张,,依次类推.这样操作最少重复几次就能恢复原来的牌型?请说明理由.
备战2024届江苏新高考解答题专项限时训练卷(六)(新结构)
解答题(共77分)
1.(本题13分)已知函数.
(1)当时,求的单调区间;
(2)讨论极值点的个数.
【答案】(1)单调递增区间为,单调递减区间为;(2)见解析
【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;
(2)求出函数的导函数,分、两种情况讨论,分别求出函数的单调性,即可得到函数的极值点个数.
【详解】(1)当时,定义域为,
又,
所以,
由,解得,此时单调递增;
由,解得,此时单调递减,
所以的单调递增区间为,单调递减区间为.
(2)函数的定义域为,
由题意知,,
当时,,所以在上单调递增,
即极值点的个数为个;
当时,易知,
故解关于的方程得,,,
所以,
又,,
所以当时,,即在上单调递增,
当时,,即在上单调递减,
即极值点的个数为个.
综上,当时,极值点的个数为个;当时,极值点的个数为个.
2.(本题15分)如图,在四棱锥中,底面为正方形,平面与底面所成的角为,为的中点.
(1)求证:平面;
(2)若为的内心,求直线与平面所成角的正弦值.
【答案】(1)见解析;(2)
【分析】(1)由线面垂直的性质以及线面垂直的判定定理可证;
(2)由等腰直角三角形内心的特点确定点的位置,以为原点建立空间直角坐标系,写出各点坐标,根据线面角的空间向量公式计算可得出结果.
【详解】(1)因为平面平面,所以,
因为与平面所成的角为平面,
所以,且,所以,
又为的中点,所以,
因为四边形为正方形,所以,
又平面,
所以平面,
因为平面,所以,
因为平面,
所以平面.
(2)因为底面为正方形,为的内心,
所以在对角线上.
如图,设正方形的对角线的交点为,
所以,
所以,
所以,
所以,又因为,所以.
由题意知两两垂直,以所在的直线分别为轴,轴,轴建立如图所示的空间直角坐标系.
所以,由(1)知,
所以,
所以.
又因为平面,所以平面的一个法向量为.
设直线与平面所成角为,
则.
3.(本题15分)联合国新闻部将我国农历二十四节气中的“谷雨”定为联合国中文日,以纪念“中华文字始祖”仓颉的贡献.某大学拟在2024年的联合国中文日举行中文知识竞赛决赛,决赛分为必答、抢答两个环节依次进行.必答环节,共2道题,答对分别记30分、40分,否则记0分;抢答环节,包括多道题,设定比赛中每道题必须进行抢答,抢到并答对者得15分,抢到后未答对,对方得15分;两个环节总分先达到或超过100分者获胜,比赛结束.已知甲、乙两人参加决赛,且在必答环节,甲答对两道题的概率分别,乙答对两道题的概率分别为,在抢答环节,任意一题甲、乙两人抢到的概率都为,甲答对任意一题的概率为,乙答对任意一题的概率为,假定甲、乙两人在各环节、各道题中答题相互独立.
(1)在必答环节中,求甲、乙两人得分之和大于100分的概率;
(2)在抢答环节中,求任意一题甲获得15分的概率;
(3)若在必答环节甲得分为70分,乙得分为40分,设抢答环节经过X道题抢答后比赛结束,求随机变量X的分布列及数学期望.
【答案】(1);(2);(3)分布列见解析,
【分析】(1)把得分之和大于100分的事件分拆,再利用相互独立事件及互斥事件的概率公式计算即得.
(2)甲获得15分的事件是甲抢到答正确与乙抢到答错的事件和,再列式求出概率.
(3)求出的可能值及各个值对应的概率,列出分布列并求出数学期望.
【详解】(1)两人得分之和大于100分可分为甲得40分、乙得70分,甲得70分、乙得40分,甲得70分、乙得70分三种情况,
所以得分大于100分的概率.
(2)抢答环节任意一题甲得15分的概率.
(3)的可能取值为2,3,4,5,
由抢答任意一题甲得15分的概率为,得抢答任意一题乙得15分的概率为,
,,
,
,
所以的分布列为:
数学期望.
4.(本题17分)已知O为坐标原点,点W为:和的公共点,,与直线相切,记动点M的轨迹为C.
(1)求C的方程;
(2)若,直线与C交于点A,B,直线与C交于点,,点A,在第一象限,记直线与的交点为G,直线与的交点为H,线段AB的中点为E.
①证明:G,E,H三点共线;
②若,过点H作的平行线,分别交线段,于点,,求四边形面积的最大值.
【答案】(1);(2)①证明见解析 ;②16
【分析】(1)设,根据题目条件列式化简可得轨迹;
(2)①设线段的中点为,利用向量证明G,E,F三点共线,同理H,E,F三点共线,进而可得结论;②将四边形面积转化为四边形GAHB面积,将直线和抛物线联立,利用韦达定理,求出直线和直线的方程,则可求出坐标,然后利用面积公式求解最值即可.
【详解】(1)设,与直线的切点为N,则,
所以
化简得,所以C的方程为:;
(2)①设线段的中点为,
因为,所以可设,,
又因为,
所以G,E,F三点共线,同理,H,E,F三点共线,
所以G,E,H三点共线.
②设,,,,AB中点为E,中点为F,
将代入得:,所以,,
所以,
同理,,(均在定直线上)
因为,所以△EAT与△EAH面积相等,与△EBH面积相等;
所以四边形的面积等于四边形GAHB的面积,
设,,
直线,即
整理得:直线,又因为,所以,
同理,直线,,所以
所以,
所以四边形GAHB面积
,
当且仅当,即,即时取等号,
所以四边形面积的最大值为16.
【点睛】关键点点睛:本题的关键是将四边形的面积转化为四边形GAHB的面积,还有充分利用第一问中的点共线求出的横坐标,可以给求面积带来便利.
5.(本题17分)置换是代数的基本模型,定义域和值域都是集合的函数称为次置换.满足对任意的置换称作恒等置换.所有次置换组成的集合记作.对于,我们可用列表法表示此置换:,记.
(1)若,计算;
(2)证明:对任意,存在,使得为恒等置换;
(3)对编号从1到52的扑克牌进行洗牌,分成上下各26张两部分,互相交错插入,即第1张不动,第27张变为第2张,第2张变为第3张,第28张变为第4张,,依次类推.这样操作最少重复几次就能恢复原来的牌型?请说明理由.
【答案】(1);(2)见解析;(3)最少8次就能恢复原来的牌型,理由见解析
【分析】(1)根据题意,得到;
(2)解法一:分类列举出所有情况,得到结论;
解法二:,故至少有一个满足,当分别取时,记使得的值分别为,取为的最小公倍数即可得到答案;
(3)设原始牌型从上到下依次编号为1到52,故,列举出各编号在置换中的变化情况,得到连续置换中只有三种循环:一阶循环2个,二阶循环2个,八阶循环48个,从而得到最少8次这样的置换即为恒等置换.
【详解】(1),
由题意可知;
(2)解法一:①若,则为恒等置换;
②若存在两个不同的,使得,不妨设,则.
所以,即为恒等置换;
③若存在唯一的,使得,不妨设,则或.
当时,由(1)可知为恒等置换;
同理可知,当时,也是恒等置换;
④若对任意的,
则情形一:或或;
情形二:或或
或或或;
对于情形一:为恒等置换;
对于情形二:为恒等置换;
综上,对任意,存在,使得为恒等置换;
解法二:对于任意,都有,
所以中,至少有一个满足,
即使得的的取值可能为.
当分别取时,记使得的值分别为,
只需取为的最小公倍数即可.
所以对任意,存在,使得为恒等置换;
(3)不妨设原始牌型从上到下依次编号为1到52,则洗牌一次相当于对作一次如下置换:,即
其中.
注意到各编号在置换中的如下变化:
,,
,
,
,
,
,
,
,
所有编号在连续置换中只有三种循环:一阶循环2个,二阶循环2个,八阶循环48个,
注意到的最小公倍数为8,由此可见,最少8次这样的置换即为恒等置换,
故这样洗牌最少8次就能恢复原来的牌型.
【点睛】
新定义问题的方法和技巧:
(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;
(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;
(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;
(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.
2
3
4
5
2023高三数学寒假精准限时训练(10练)【全国卷版】解答题 精准限时训练 2(全国卷版)(原卷版): 这是一份2023高三数学寒假精准限时训练(10练)【全国卷版】解答题 精准限时训练 2(全国卷版)(原卷版),共5页。试卷主要包含了解答题等内容,欢迎下载使用。
2023高三数学寒假精准限时训练(10练)【全国卷版】解答题 精准限时训练 5(全国卷版)(原卷版): 这是一份2023高三数学寒假精准限时训练(10练)【全国卷版】解答题 精准限时训练 5(全国卷版)(原卷版),共6页。试卷主要包含了解答题等内容,欢迎下载使用。
2023高三数学寒假精准限时训练(10练)【全国卷版】解答题 精准限时训练 1(全国卷版)(原卷版): 这是一份2023高三数学寒假精准限时训练(10练)【全国卷版】解答题 精准限时训练 1(全国卷版)(原卷版),共5页。试卷主要包含了解答题等内容,欢迎下载使用。