搜索
    上传资料 赚现金
    江西省八所重点中学2024届高三下学期4月联考数学试卷(含答案)
    立即下载
    加入资料篮
    江西省八所重点中学2024届高三下学期4月联考数学试卷(含答案)01
    江西省八所重点中学2024届高三下学期4月联考数学试卷(含答案)02
    江西省八所重点中学2024届高三下学期4月联考数学试卷(含答案)03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省八所重点中学2024届高三下学期4月联考数学试卷(含答案)

    展开
    这是一份江西省八所重点中学2024届高三下学期4月联考数学试卷(含答案),共14页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题
    1.抛物线的焦点坐标为( )
    A.B.C.D.
    2.已知集合,集合,则( )
    A.,B.,
    C.,D.,
    3.已知是正项等比数列的前n项和,且,,则( )
    A.212B.168C.121D.163
    4.复数Z在复平面内对应的点为,为坐标原点,将向量绕点逆时针旋转后得到向量,点对应复数为,则( )
    A.B.C.D.
    5.函数有且只有一个零点,则m的取值可以是( )
    A.2B.1C.3D.
    6.已知正四棱锥,现有五种颜色可供选择,要求给每个顶点涂色,每个顶点只涂一种颜色,且同一条棱上的两个顶点不同色,则不同的涂色方法有( )
    A.240B.420C.336D.120
    7.已知,,,则( )
    A.B.C.D.
    8.我国著名科幻作家刘慈欣的小说(三体II·黑暗森林)中的“水滴”是三体文明使用新型材料—强互作用力(SIM)材料所制成的宇宙探测器,其外形与水滴相似,某科研小组研发的新材料水滴角测试结果如图所示(水滴角可看作液,固,气三相交点处气—液两相界面的切线与液—固两相交线所成的角),圆法和椭圆法是测量水滴角的常用方法,即将水滴轴截面看成圆或者椭圆(长轴平行于液—固两者的相交线,椭圆的短半轴长小于圆的半径)的一部分,设图中用圆法和椭圆法测量所得水滴角分别为,,则( )
    A.B.C.D.和的大小关系无法确定
    二、多项选择题
    9.已知随机变量X,Y,且的分布列如下:
    若,则( )
    A.B.C.D.
    10.已知函数;满足:,恒成立,且在上有且仅有2个零点,则( )
    A.周期为
    B.函数在区间上单调递增
    C.函数的一条对称轴为
    D.函数的对称中心为
    11.在棱长为2的正方体中,点E,F分别为棱,的中点,过点E的平面与平面平行,点G为线段上的一点,则下列说法正确的是( )
    A.
    B.若点为平面内任意一点,则的最小值为
    C.底面半径为且高为的圆柱可以在该正方体内任意转动
    D.直线与平面所成角的正弦值的最大值为
    三、填空题
    12.展开式中项系数为___________.
    13.在三角形ABC中,,角A刚平分能AD交BC于点,若,则三角形ABC面积的最大值为___________.
    14.已知函数,存在实数,,…,使得成立,若正整数n的最大值为8,则正实数a的取值范围是___________.
    四、解答题
    15.数列满足,,,.
    (1)证明:数列为等差数列,并求数列的通项公式;
    (2)求正整数,使得.
    16.三棱柱中,,,侧面为矩形,,三棱锥的体积为.
    (1)求侧棱的长;
    (2)侧棱上是否存在点E,使得直线AE与平面所成角的正弦值为?若存在,求出线段的长;若不存在,请说明理由.
    17.在平面直角坐标系中,,直线,动点M在直线上,过点M作直线的垂线,与线段FM的中垂线交于点P.
    (1)求点P的轨迹的方程
    (2)经过曲线上一点P作一条倾斜角为的直线,与曲线交于两个不同的点Q,R,求的取值范围.
    18.一次摸奖活动,选手在连续摸奖时,首次中奖得1分,并规定:若连续中奖,则第一次中奖得1分,下一次中奖的得分是上一次得分的两倍:若某次未中奖,则该次得0分,且下一次中奖得1分.已知某同学连续摸奖n次,总得分为X,每次中奖的概率为,且每次摸奖相互独立.
    (1)当时,求的概率;
    (2)当时,求X的概率分布列和数学期望;
    (3)当时,判断X的数学期望与10的大小,并说明理由.
    19.已知函数,恒成立.
    (1)求实数a的值;
    (2)若关于的方程在上有两个不相等的实数根,求实数m的取值范围;
    (3)数列满足:,,若数列中有无穷个不同的项,求整数p的值.
    参考答案
    1.答案:D
    解析:抛物线的方程即,表示顶点在原点,开口向上的抛物线,
    而抛物线的焦点坐标为,故所求的抛物线的焦点坐标为,
    故选D.
    2.答案:A
    解析:
    3.答案:C
    解析:由题意得,,所以,,所以.
    4.答案:C
    解析:
    5.答案:B
    解析:
    6.答案:B
    解析:先给点P涂色,有5种结果,再给点A涂色,有4种结果,再给点B涂色,有3种结果,当点C与点A同色时,点D有3种结果,当点C与点A不同色时,点C有2种结果,点D也有2种结果,根据分步计数原理和分类计数原理得到结果,本题考查分类计数原理,考查分步计数原理,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.
    7.答案:A
    解析:因为,
    所以,
    因为,所以,
    所以,
    所以
    ,
    所以
    因为,,
    所以,所以,即,
    所以.
    8.答案:A
    解析:由题意知,圆法和椭圆法是测量水滴角的常用方法,
    即将水滴轴截面看成圆或者椭圆的一部分.
    设圆法和椭圆法测量所得水滴角分别为,;
    由题意可知,若将水滴轴截面看成圆的一部分,圆的半径为R,如图1,
    则有,解得,
    所以;
    若将水滴轴截面看成椭圆的一部分,如图2,
    切点坐标为,
    则椭圆上一点处的切线方程为,此时椭圆的切线方程的斜率设为,则;
    将切点坐标为代入切线方程可得解得,
    所以;
    因为短半轴,
    所以,
    即,
    所以.
    故选:A.
    9.答案:AC
    解析:的分布列如下:
    ,,
    ,,
    则,
    ,
    ,,
    解得,,
    ,
    故选:AC.
    10.答案:BCD
    解析:,恒成立,故的最大值为,
    ,,即,,
    当时,,有且仅有2个零点,
    ,
    ,,
    即,,,
    故,
    ,,,
    ,,故,
    A,周期为.故A错误;
    B,令,,
    得,,
    当时,的单调递增区间为,
    而是的真子集,故函数在区间上单调递增,故B正确;
    C,令,,得,,
    故的对称轴为,,当时,的一条对称轴为,故C正确;
    D,由,,得,,
    故函数的对称中心为
    ,,故D正确.
    综上,选择BCD.
    11.答案:ACD
    解析:
    12.答案:
    解析:
    13.答案:3
    解析:
    14.答案:
    解析:
    15.答案:(1)见解析
    (2)3333
    解析:(1)由已知条件可知,由于,
    故,,
    故数列是以1为公差的等差数列,
    即.
    (2)
    由,得.
    16.答案:(1)见解析
    (2)
    解析:(1)过A在平面内作,垂足为D,
    侧面为矩形,,又,
    平面,平面ABC,平面平面,
    平面,平面ABC,
    三棱锥的体积为,,
    ,,
    ,,;
    (2)存在E满足题意,.
    理由如下:如图,以AB,AC,AD分别为坐标轴建立如图所示的空间直角坐标系,
    则,,,,
    设,,则,
    ,,.
    设平面的一个法向量为,
    则,即,
    令,则,平面的一个法向量为,
    设直线AE与平面所成角为,
    则,
    解得,存在满足题意,.
    17.答案:(1)
    (2)见解析
    解析:(1)由图可得,所以点的轨迹是以为焦点的抛物线,
    故点的轨迹的方程为;
    (2)设,则直线的方程为,代入曲线的方程得,.
    化简可得:①,
    由于与交于两个不同的点,故关于x的方程①的判别式为正,计算得,
    ,
    因此有,②
    设Q,R的模坐标分别为,,
    由①知,,,
    因此,结合的倾斜角为可知,
    ,③
    由②可知,,故,
    从而由③得:.
    18.答案:(1)
    (2)
    (3)见解析
    解析:(1)摸奖5次得分为3分,有如下两种情形:
    情形一,恰好两次中奖,且两次相邻;
    情形二,恰好三次中奖,且任意两次都不相邻.
    情形一发生的概率为.
    情形二发生概率为,
    所以;
    (2)X的可能取值为0,1,2,3,7,其中
    ,,
    ,,
    所以X的概率分布列为
    所以.
    (3).理由如下:
    记该同学摸奖30次中奖次数为,则.
    若每次中奖都得1分,则得分的期望为.
    由题中比赛规则可知连续中奖时,得分翻倍,
    故实际总得分的期望必大于每次都得1分的数学期望.
    所以.
    19.答案:(1)见解析
    (2)
    (3)或
    解析:(1),因为恒成立,且,
    所以是极大值点,即.解得.
    验证当时符合题意.
    (2)由(1)知,所以原方程变形为.
    令,于是,原方程在上有两个不相等的实数根,
    等价于直线与曲线在上有两个交点.
    因为,所以当时,,
    当时,,所以,.
    因为,,所以,,
    而,所以,即,
    所以m的取值范围为.
    (3)因为恒成立,即恒成立.
    所以,当且仅当时取等号.
    若,则,
    所以数列从第二项起单调递增,故数列有无穷个不同的项,满足题意.
    因此只需且即可.
    且等价于且
    令,,
    易知在R上递增,,
    所以在上递减,在上递增,
    又,,,,,
    综上,或.
    X
    1
    2
    3
    4
    5
    P
    m
    n
    X
    1
    2
    3
    4
    5
    P
    m
    n
    X
    0
    1
    2
    3
    7
    P
    相关试卷

    2024江西省八所重点中学高三下学期4月联考数学试卷: 这是一份2024江西省八所重点中学高三下学期4月联考数学试卷,共9页。试卷主要包含了已知集合,集合,则,已知,,,则,我国著名科幻作家刘慈欣的小说,已知函数;满足等内容,欢迎下载使用。

    江西省八所重点中学2024届高三联考 数学试卷: 这是一份江西省八所重点中学2024届高三联考 数学试卷,共4页。

    2024届江西省八所重点中学高三下学期4月联考数学试卷试题及答案: 这是一份2024届江西省八所重点中学高三下学期4月联考数学试卷试题及答案,文件包含江西省八所重点中学2024届高三下学期4月联考数学试卷pdf、数学答案pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map