终身会员
搜索
    上传资料 赚现金

    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(原卷版).docx
    • 解析
      专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(解析版).docx
    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(原卷版)第1页
    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(原卷版)第2页
    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(原卷版)第3页
    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(解析版)第1页
    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(解析版)第2页
    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)(解析版)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)

    展开

    这是一份专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用),文件包含专题05五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练新高考新题型专用原卷版docx、专题05五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练新高考新题型专用解析版docx等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。


    【题型1 圆锥曲线中的轨迹方程问题】
    【题型2 圆锥曲线中齐次化处理斜率乘积问题】
    【题型3 圆锥曲线中的三角形(四边形)面积问题】
    【题型4 圆锥曲线中的定点、定值、定直线问题】
    【题型5 圆锥曲线中的极点与极线】
    题型1 圆锥曲线中的轨迹方程问题
    曲线方程的定义
    一般地,如果曲线与方程之间有以下两个关系:
    ①曲线上的点的坐标都是方程的解;
    ②以方程的解为坐标的点都是曲线上的点.
    此时,把方程叫做曲线的方程,曲线叫做方程的曲线.
    求曲线方程的一般步骤:
    (1)建立适当的直角坐标系(如果已给出,本步骤省略);
    (2)设曲线上任意一点的坐标为;
    (3)根据曲线上点所适合的条件写出等式;
    (4)用坐标表示这个等式,并化简;
    (5)确定化简后的式子中点的范围.
    上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围.
    求轨迹方程的方法:
    定义法:
    如果动点的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
    直接法:
    如果动点的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点满足的等量关系易于建立,则可以先表示出点所满足的几何上的等量关系,再用点的坐标表示该等量关系式,即可得到轨迹方程。
    代入法(相关点法):
    如果动点的运动是由另外某一点的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出,用表示出相关点的坐标,然后把的坐标代入已知曲线方程,即可得到动点的轨迹方程。
    点差法:
    圆锥曲线中与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦的中点的坐标满足,且直线的斜率为,由此可求得弦中点的轨迹方程.
    已知双曲线与直线:有唯一的公共点,过点且与垂直的直线分别交轴,轴于,两点,点坐标为,当点坐标为时,点坐标为.
    (1)求双曲线的标准方程;
    (2)当点运动时,求点的轨迹方程,并说明轨迹是什么曲线.
    已知,直线相交于,且直线的斜率之积为2.
    (1)求动点的轨迹方程;
    (2)设是点轨迹上不同的两点且都在轴的右侧,直线在轴上的截距之比为,求证:直线经过一个定点,并求出该定点坐标.
    在平面直角坐标系中,已知点,点的轨迹为.
    (1)求的方程;
    (2)设点在直线上,为的左右顶点,直线交于点(异于),直线交于点(异于),交于,过作轴的垂线分别交、于,问是否存在常数,使得.
    1.M是一个动点,与直线垂直,垂足位于第一象限,与直线垂直,垂足位于第四象限,且.
    (1)求动点M的轨迹方程E;
    (2)设,,过点的直线l与曲线E交于A,B两点(点A在x轴上方),P为直线,的交点,当点P的纵坐标为时,求直线l的方程.
    2.在平面直角坐标系中,已知双曲线经过点,点与点关于原点对称,为上一动点,且异于两点.
    (1)求的离心率;
    (2)若△的重心为,点,求的最小值;
    (3)若△的垂心为,求动点的轨迹方程.
    3.已知长为的线段的中点为原点,圆经过两点且与直线相切,圆心的轨迹为曲线.
    (1)求曲线的方程;
    (2)过点且互相垂直的直线分别与曲线交于点和点,且,四边形的面积为,求实数的值.
    4.已知椭圆的离心率为,长轴长为4,是其左、右顶点,是其右焦点.
    (1)求椭圆的标准方程;
    (2)设是椭圆上一点,的角平分线与直线交于点.
    ①求点的轨迹方程;
    ②若面积为,求.
    5.已知点和直线,点到的距离 .
    (1)求点的轨迹方程;
    (2)不经过圆点的直线与点的轨迹交于,两点. 设直线,的斜率分别为,,记 ,是否存在值使得的面积为定值,若存在,求出的值;若不存在,说明理由.
    6.已知动圆过定点,且截轴所得的弦长为4.
    (1)求动圆圆心的轨迹方程;
    (2)若点,过点的直线交的轨迹于两点,求的最小值.
    7.在中,已知,,设分别是的重心、垂心、外心,且存在使.
    (1)求点的轨迹的方程;
    (2)求的外心的纵坐标的取值范围;
    (3)设直线与的另一个交点为,记与的面积分别为,是否存在实数使?若存在,求出的值;若不存在,请说明理由.
    8.已知,,为平面上的一个动点.设直线的斜率分别为,,且满足.记的轨迹为曲线.
    (1)求的轨迹方程;
    (2)直线,分别交动直线于点,过点作的垂线交轴于点.是否存在最大值?若存在,求出最大值;若不存在,说明理由.
    题型2 圆锥曲线中齐次化处理斜率乘积问题

    已知点是椭圆上的一个定点,是椭圆上的两个动点。
    若直线,则直线过定点且定点为;当时,为定值;
    证明:重新建系将椭圆上的成为新的坐标原点按得椭圆
    又点在椭圆上,所以,代入上式可得①
    椭圆上的定点和动点分别对应椭圆上的定点和动点,设直线的方程为,代入①得。当时,两边除以得.,因为点的坐标满足这个方程,所以是这个关于的方程的两个根.
    若,由平移斜率不变可知,故,当时,所以,由此得。所以的斜率为定值,为定值;
    即,由此知点在直线上,从而直线过定点.

    已知点是平面内一个定点,椭圆:上有两动点
    若直线,则直线过定点.
    证明:重新建系将椭圆上的成为新的坐标原点按椭圆:,展开得:.
    平面内的定点和椭圆上的动点分别对应椭圆上的定点和动点、,设直线的方程为,代入展开式得(构造齐次式),当时,两边同时除以整理得,因为点的坐标满足这个方程,所以和是关于的方程的两根.若,由平移斜率不变可知所以整理可得到和的关系,从而可知直线过定点,由平移规律可得直线过定点.
    已知椭圆的左、右焦点分别为,, 点是椭圆的一个顶点,是等腰直角三角形.
    (1)求椭圆的方程;
    (2)设点是椭圆上一动点,求线段的中点的轨迹方程;
    (3)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为, ,且 ,探究:直线是否过定点,并说明理由.
    已知椭圆的左、右焦点分别是,,点在椭圆上,且.
    (1)求椭圆的标准方程;
    (2)过点且不过点的直线交椭圆于,两点,求证:直线与的斜率之和为定值.
    如图,椭圆经过点,且离心率为.
    (1)求椭圆E的方程;
    (2)若经过点,且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为定值.
    1.已知椭圆经过点,下顶点为抛物线的焦点.
    (1)求椭圆的方程;
    (2)若点均在椭圆上,且满足直线与的斜率之积为,
    (ⅰ)求证:直线过定点;
    (ⅱ)当时,求直线的方程.
    2.已知椭圆:()中,点,分别是的左、上顶点,,且的焦距为.
    (1)求的方程和离心率;
    (2)过点且斜率不为零的直线交椭圆于,两点,设直线,,的斜率分别为,,,若,求的值.
    3.已知椭圆E:经过点,右焦点为,A,B分别为椭圆E的上顶点和下顶点.
    (1)求椭圆E的标准方程;
    (2)已知过且斜率存在的直线l与椭圆E交于C、D两点,直线BD与直线AC的斜率分别为k1和k2,求的值.
    4.在平面直角坐标系中,重新定义两点之间的“距离”为,我们把到两定点的“距离”之和为常数的点的轨迹叫“椭圆”.
    (1)求“椭圆”的方程;
    (2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;
    (3)设,作出“椭圆”的图形,设此“椭圆”的外接椭圆为的左顶点为,过作直线交于两点,的外心为,求证:直线与的斜率之积为定值.
    5.焦点在轴上的椭圆的左顶点为,,,为椭圆上不同三点,且当时,直线和直线的斜率之积为.
    (1)求的值;
    (2)若的面积为1,求和的值;
    (3)在(2)的条件下,设的中点为,求的最大值.
    6.已知,分别是椭圆的左、右焦点,左顶点为A,则上顶点为,且的方程为.
    (1)求椭圆的标准方程;
    (2)若是直线上一点,过点的两条不同直线分别交于点,和点,,且,求证:直线的斜率与直线的斜率之和为定值.
    7.已知椭圆的左、右焦点分别为,,上顶点为,右顶点为,的面积为,.
    (1)求椭圆的标准方程;
    (2)过点且斜率大于的直线交椭圆于,两点,线段的中点为,若,求直线与直线的斜率之积的最小值.
    8.已知P为圆上任意一点,过点P作x轴的垂线,垂足为Q,M为PQ的中点.M的轨迹曲线E.
    (1)求曲线E的轨迹方程;
    (2)曲线E交x轴正半轴于点A,交y轴正半轴于点B.直线与曲线E交于C,D两点,若直线直线AB,设直线AC,BD的斜率分别为.证明:为定值.
    题型3 圆锥曲线中的三角形(四边形)面积问题
    弦长公式

    (最常用公式,使用频率最高)

    三角形面积问题
    直线方程:
    焦点三角形的面积
    直线过焦点的面积为

    注意:为联立消去后关于的一元二次方程的二次项系数
    平行四边形的面积
    直线为,直线为
    注意:为直线与椭圆联立后消去后的一元二次方程的系数.
    范围问题
    应用均值不等式求解最值时,应注意“一正二定三相等”
    圆锥曲线经常用到的均值不等式形式列举:
    (1)(注意分三种情况讨论)
    (2)
    当且仅当时,等号成立
    (3)
    当且仅当时等号成立.
    (4)
    当且仅当时,等号成立
    (5)
    当且仅当时等号成立.
    双曲线,最早由门奈赫莫斯发现, 后来阿波罗尼兹进行了总结和完善.在他的著作中,双曲线也被称作“超曲线”. 已知双曲线的实半轴长为2,左、右顶点分别为,经过点的直线与的右支分别交于两点,其中点在轴上方.
    (1)若轴时,,设直线的斜率分别为,求的值;
    (2)若,求的面积.
    设抛物线方程为,过点的直线分别与抛物线相切于两点,且点在轴下方,点在轴上方.
    (1)当点的坐标为时,求;
    (2)点在抛物线上,且在轴下方,直线交轴于点,直线交轴于点,且.若的重心在轴上,求的最大值.(注:表示三角形的面积)
    已知椭圆C:过点A(2,),且C的离心率为.
    (1)求C的方程;
    (2)设直线l交C于不同于点A的M,N两点,直线AM,AN的倾斜角分别为,,若,求面积的最大值.
    1.设点、分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
    (1)求椭圆的方程;
    (2)求椭圆的外切矩形的面积的最大值.
    2.在椭圆上任取一点,过点作轴的垂线段,为垂足,点在线段上,且满足.
    (1)当点在椭圆上运动时,求点的轨迹的方程;
    (2)若曲线与,轴的正半轴分别交于点,,点是上第三象限内一点,线段与轴交于点,线段与轴交于点,求四边形的面积.
    3.在椭圆(双曲线)中,任意两条互相垂直的切线的交点都在同一个圆上,该圆的圆心是椭圆(双曲线)的中心,半径等于椭圆(双曲线)长半轴(实半轴)与短半轴(虚半轴)平方和(差)的算术平方根,则这个圆叫蒙日圆.已知椭圆的蒙日圆的面积为,该椭圆的上顶点和下顶点分别为,且,设过点的直线与椭圆交于两点(不与两点重合)且直线.
    (1)证明:,的交点在直线上;
    (2)求直线围成的三角形面积的最小值.
    4.已知椭圆的方程,右焦点为,且离心率为
    (1)求椭圆的方程;
    (2)设是椭圆的左、右顶点,过的直线交于两点(其中点在轴上方),求与的面积之比的取值范围.
    5.已知椭圆的左、右焦点分别为、,离心率为.点在直线上运动,且直线的斜率与直线的斜率之商为2.
    (1)求的方程;
    (2)若点A、B在椭圆上,为坐标原点,且,求面积的最小值.
    6.已知椭圆的下、上顶点分别为,左、右顶点分别为,四边形的面积为,若椭圆上的点到右焦点距离的最大值和最小值之和为6.(1)求椭圆的方程;
    (2)过点且斜率不为0的直线与交于(异于两点,设直线与直线交于点,探究三角形的面积是否为定值,请说明理由.
    7.已知椭圆经过,两点.
    (1)求的方程;
    (2)若圆的两条相互垂直的切线均不与坐标轴垂直,且直线分别与相交于点A,C和B,D,求四边形面积的最小值.
    8.已知椭圆的方程为,由其个顶点确定的三角形的面积为,点在上,为直线上关于轴对称的两个动点,直线与的另一个交点分别为.
    (1)求的标准方程;
    (2)证明:直线经过定点;
    (3)为坐标原点,求面积的最大值.
    题型4 圆锥曲线中的定点、定值、定直线问题
    定点问题
    1.求解(或证明)直线和曲线过定点的基本思路是:把直线或曲线方程中的变量,视作常数,把方程一边化为零,既然是过定点,那么这个方程就是对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于,的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.
    2.常用方法:一是引进参数法,引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点;二是特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.
    定值问题
    1.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.常见定值问题的处理方法:
    (1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示
    (2)将所求表达式用核心变量进行表示,然后进行化简,看能否得到一个常数.
    2. 定值问题的处理技巧:
    (1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.
    (2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢
    (3)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算
    定直线问题
    定直线问题是证明动点在 定直线上,其实质是求动点的轨迹方程,所以所用的方法即为 求轨迹方程的方法,如定义法、消参法、交轨法等.
    已知抛物线C:y2=2px(p>0),M是其准线与x轴的交点,过点M的直线l与抛物线C交于A,B两点,当点A的坐标为(4,y0)时,有.
    (1)求抛物线C的方程;
    (2)设点A关于x轴的对称点为点P,证明:直线BP过定点,并求出该定点坐标.
    已知斜率为的直线与抛物线相交于两点.
    (1)求线段中点纵坐标的值;
    (2)已知点,直线分别与抛物线相交于两点(异于).求证:直线恒过定点,并求出该定点的坐标.
    已知双曲线,点是双曲线的左顶点,点坐标为.
    (1)过点作的两条渐近线的平行线分别交双曲线于,两点.求直线的方程;
    (2)过点作直线与椭圆交于点,,直线,与双曲线的另一个交点分别是点,.试问:直线是否过定点,若是,请求出该定点坐标;若不过定点,请说明理由.
    1.已知椭圆的左、右焦点分别为过点,且的长轴长为8.
    (1)求的方程.
    (2)设的右顶点为点,过点的直线与交于两点(异于),直线与轴分别交于点,试问线段的中点是否为定点?若是,求出该定点的坐标;若不是,请说明理由.
    2.已知椭圆的上下顶点分别为,左右顶点分别为,四边形的面积为,若椭圆上的点到右焦点距离的最大值和最小值之和为6.(1)求椭圆的方程;
    (2)过点且斜率不为0的直线与交于(异于)两点,设直线与直线交于点,证明:点在定直线上.
    3.如图,已知椭圆的短轴长为,焦点与双曲线的焦点重合.点,斜率为的直线与椭圆交于两点.

    (1)求常数的取值范围,并求椭圆的方程.
    (2)(本题可以使用解析几何的方法,也可以利用下面材料所给的结论进行解答)
    极点与极线是法国数学家吉拉德·迪沙格于1639年在射影几何学的奠基之作《圆锥曲线论稿》中正式阐述的.对于椭圆,极点(不是原点)对应的极线为,且若极点在轴上,则过点作椭圆的割线交于点,则对于上任意一点,均有(当斜率均存在时).已知点是直线上的一点,且点的横坐标为2.连接交轴于点.连接分别交椭圆于两点.
    ①设直线、分别交轴于点、点,证明:点为、的中点;
    ②证明直线:恒过定点,并求出定点的坐标.
    4.已知椭圆的左、右焦点分别为,过点,且.
    (1)求的方程.
    (2)设的右顶点为点,过点的直线与交于两点(异于),直线与轴分别交于点,试问线段的中点是否为定点?若是,求出该定点的坐标;若不是,请说明理由.
    5.已知椭圆的离心率为,且经过点.
    (1)求椭圆的方程;
    (2)设过点且不与坐标轴垂直的直线与椭圆交于两点,过分别作轴的垂线,垂足为点,求证:直线与的交点在某条定直线上,并求该定直线的方程.
    6.已知椭圆的左顶点和下顶点B,焦距为,直线l交椭圆L于C,D(不同于椭圆的顶点)两点,直线AD交y轴于M,直线BC交x轴于N,且直线MN交l于P.
    (1)求椭圆L的标准方程;
    (2)若直线AD,BC的斜率相等,证明:点P在一条定直线上运动.
    7.在平面直角坐标系xOy中,动点M到点的距离与到直线的距离之比为.
    (1)求动点M轨迹W的方程;
    (2)过点F的两条直线分别交W于A,B两点和C,D两点,线段AB,CD的中点分别为P,Q.设直线AB,CD的斜率分别为,,且,试判断直线PQ是否过定点.若是,求出定点的坐标;若不是,请说明理由.
    8.已知动圆经过定点,且与圆:内切.
    (1)求动圆圆心的轨迹的方程;
    (2)设轨迹与轴从左到右的交点为,,点为轨迹上异于,的动点,设交直线于点,连接交轨迹于点,直线,的斜率分别为,.
    ①求证:为定值;
    ②证明:直线经过轴上的定点,并求出该定点的坐标.
    题型5 圆锥曲线中的极点与极线
    圆锥曲线的极点与极线
    已知椭圆(a>b>0),则称点和直线为椭圆的一对极点和极线.极点和极线是成对出现的.
    我们先从几何的角度来研究圆锥曲线的极点与极线.
    从几何角度看极点与极线
    如图,设是不在圆锥曲线上的一点,过点引两条割线依次交圆锥曲线于四点,,,,连接,交于,连接,交于,则直线为点对应的极线.
    若为圆锥曲线上的点,则过点的切线即为极线.
    由图同理可知,为点对应的极线,为点所对应的极线.因而将称为自极三点形.
    设直线交圆锥曲线于点,两点,则,恰为圆锥曲线的两条切线.
    定理:(1)当在圆锥曲线上时,则点的极线是曲线在点处的切线;
    (2)当在外时,过点作的两条切线,设其切点分别为,,则点的极线是直线(即切点弦所在的直线);
    (3)当在内时,过点任作一割线交于,,设在,处的切线交于点,则点的极线是动点的轨迹.
    已知抛物线的焦点为,且与圆上的点的距离的最小值4.
    (1)求;
    (2)若点在圆上,是的两条切线,是切点,求面积的最大值.
    已知F为抛物线的焦点,直线与C交于A,B两点且.
    (1)求C的方程.
    (2)若直线与C交于M,N两点,且与相交于点T,证明:点T在定直线上.
    若双曲线与椭圆共顶点,且它们的离心率之积为.
    (1)求椭圆C的标准方程;
    (2)若椭圆C的左、右顶点分别为,,直线l与椭圆C交于P、Q两点,设直线与的斜率分别为,,且.试问,直线l是否过定点?若是,求出定点的坐标;若不是,请说明理由.
    1.设分别是椭圆的左、右顶点,点为椭圆的上顶点.
    (1)若,求椭圆的方程;
    (2)设,是椭圆的右焦点,点是椭圆第二象限部分上一点,若线段的中点在轴上,求的面积.
    (3)设,点是直线上的动点,点和是椭圆上异于左右顶点的两点,且,分别在直线和上,求证:直线恒过一定点.
    2.已知,分别是双曲线的左,右顶点,直线(不与坐标轴垂直)过点,且与双曲线交于,两点.
    (1)若,求直线的方程;
    (2)若直线与相交于点,求证:点在定直线上.
    3.已知椭圆与轴的交点(点A位于点的上方),为左焦点,原点到直线的距离为.
    (1)求椭圆的离心率;
    (2)设,直线与椭圆交于不同的两点,求证:直线与直线的交点在定直线上.
    4.已知椭圆的离心率,长轴的左、右端点分别为
    (1)求椭圆的方程;
    (2)设直线 与椭圆交于两点,直线与交于点,试问:当变化时,点是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
    5.已知椭圆C:经过点,其长半轴长为2.
    (1)求椭圆C的方程:
    (2)设经过点的直线与椭圆C相交于D,E两点,点E关于x轴的对称点为F,直线DF与x轴相交于点G,求的面积的取值范围.
    6.已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.
    (1)求椭圆的方程;
    (2)证明:直线恒过定点.
    7.椭圆的左、右顶点分别为,,上顶点为,点,线的倾斜角为.
    (1)求椭圆的方程;
    (2)过且斜率存在的动直线与椭圆交于、两点,直线与交于,求证:在定直线上.
    8.已知椭圆的离心率为,且点在椭圆上.
    (1)求椭圆C的标准方程;
    (2)如图,椭圆C的左、右顶点分别为A,B,点M,N是椭圆上异于A,B的不同两点,直线的斜率为,直线的斜率为,求证:直线过定点.

    相关试卷

    真题重组卷05(2024新题型)-冲刺2024年高考数学真题重组卷(新高考新题型专用):

    这是一份真题重组卷05(2024新题型)-冲刺2024年高考数学真题重组卷(新高考新题型专用),文件包含真题重组卷05新七省专用解析版pdf、真题重组卷05新七省专用参考答案pdf、真题重组卷05新七省专用考试版pdf等3份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    专题11:圆锥曲线(七大题型)-2024年新高考新题型试卷结构冲刺讲义:

    这是一份专题11:圆锥曲线(七大题型)-2024年新高考新题型试卷结构冲刺讲义,文件包含专题十一圆锥曲线解析版docx、专题十一圆锥曲线docx等2份试卷配套教学资源,其中试卷共69页, 欢迎下载使用。

    专题09:数列(五大题型)-2024年新高考新题型试卷结构冲刺讲义:

    这是一份专题09:数列(五大题型)-2024年新高考新题型试卷结构冲刺讲义,文件包含专题九数列解析版docx、专题九数列docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map