所属成套资源:2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)
- 专题01 五大类解三角形题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用) 试卷 1 次下载
- 专题02 五大类数列题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用) 试卷 0 次下载
- 专题03 五大类立体几何题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用) 试卷 0 次下载
- 专题05 五大类圆锥曲线题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用) 试卷 0 次下载
- 高考逆袭卷01(新高考新题型)-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用) 试卷 0 次下载
高考逆袭卷02(新高考新题型)-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用)
展开
这是一份高考逆袭卷02(新高考新题型)-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练(新高考新题型专用),文件包含高考逆袭卷02新高考新题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练新高考新题型专用原卷版docx、高考逆袭卷02新高考新题型-2024年高考数学最后冲刺大题秒杀技巧及题型专项训练新高考新题型专用解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
(考试时间:120分钟 试卷满分:150分)
全国新高考卷的题型会有所调整,考试题型为8(单选题)+3(多选题)+3(填空题)+5(解答题),其中最后一道试题是新高考地区新增加的题型,主要涉及集合、数列,导数等模块,以解答题的方式进行考查。
预测2024年新高考地区数列极有可能出现在概率与统计大题中,而结构不良型题型可能为集合或导数模块中的一个,出现在19题的可能性较大,难度中等偏上,例如本卷第19题。
第I卷(选择题)
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知一组数据,4,2,5,3的平均数为,且,是方程的两根,则这组数据的方差为( )
A.10B.C.2D.
2.,是两个向量集合,则等于( )
A.B.C.D.
3.在ΔABC中,内角A、B、C所对的边分别为a、b、c,若A、B、C成等差数列,3a、3b、3c成等比数列,则csAcsB=( )
A.B.C.D.
4.在三棱锥中,底面为边长为3的正三角形,侧棱底面,若三棱锥的外接球的体积为,则该三棱锥的体积为( )
A.B.C.D.
5.有一排7只发光二极管,每只二极管点亮时可发出红光或绿光,若每次恰有3只二极管点亮,且相邻的两只不能同时点亮,根据三只点亮的不同位置,或不同颜色来表示不同的信息,则这排二极管能表示的信息种数共有种
A.10B.48C.60D.80
6.设,,,则( )
A.B.C.D.
7.按照“碳达峰”、“碳中和”的实现路径,2030年为碳达峰时期,2060年实现碳中和,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池迎来了蓬勃发展的风口.Peukert于1898年提出蓄电池的容量C(单位:),放电时间t(单位:)与放电电流I(单位:)之间关系的经验公式:,其中n为Peukert常数,为了测算某蓄电池的Peukert常数n,在电池容量不变的条件下,当放电电流时,放电时间;当放电电流时,放电时间.则该蓄电池的Peukert常数n大约为( )(参考数据:,)
A.B.C.D.2
8.过双曲线的右焦点作渐近线的垂线,设垂足为(为第一象限的点),延长交抛物线于点,其中该双曲线与抛物线有一个共同的焦点,若,则双曲线的离心率的平方为
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知为虚数单位,以下四个说法中正确的是( )
A.
B.
C.若,则复数对应的点位于第四象限
D.已知复数满足,则在复平面内对应的点的轨迹为圆
10.设直线系:,则下面四个命题正确的是( )
A.点到中的所有直线的距离恒为定值
B.存在定点不在中的任意一条直线上
C.对于任意整数,存在正边形,其所有边均在中的直线上
D.中的直线所能围成的正三角形面积都相等
11.定义在上的偶函数满足,当时,.设函数,则下列结论正确的是( )
A.的图象关于直线对称
B.的图象在处的切线方程为
C.
D.的图象与的图象所有交点的横坐标之和为10
第II卷(非选择题)
三、填空题:本题共3小题,每小题5分,共15分.
12.已知集合,集合,命题:,命题:,若是的充分条件,则实数的取值范围是 .
13.已知多项式,则 .
14.正方体中,是棱的中点,在侧面上运动,且满足平面.以下命题正确的有 .
①侧面上存在点,使得
②直线与直线所成角可能为
③平面与平面所成锐二面角的正切值为
④设正方体棱长为1,则过点的平面截正方体所得的截面面积最大为
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(13分)已知的内角A,B,C的对边分别为a,b,c,且.
(1)求a的值:
(2)求证:;
(3)的值
16.(15分)如图1,在平面五边形中,,且,,,,将沿折起,使点到的位置,且,得到如图2所示的四棱锥.
(1)求证;平面;
(2)若,求平面与平面所成锐二面角的余弦值.
17.(15分)甲进行摸球跳格游戏.图上标有第1格,第2格,…,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为.
(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;
(2)证明:数列为等比数列.
18.(17分)焦点在轴上的椭圆的左顶点为,,,为椭圆上不同三点,且当时,直线和直线的斜率之积为.
(1)求的值;
(2)若的面积为1,求和的值;
(3)在(2)的条件下,设的中点为,求的最大值.
19.(17分)英国数学家泰勒发现了如下公式:其中为自然对数的底数,.以上公式称为泰勒公式.设,根据以上信息,并结合高中所学的数学知识,解决如下问题.
(1)证明:;
(2)设,证明:;
(3)设,若是的极小值点,求实数的取值范围.
相关试卷
这是一份真题重组卷05(2024新题型)-冲刺2024年高考数学真题重组卷(新高考新题型专用),文件包含真题重组卷05新七省专用解析版pdf、真题重组卷05新七省专用参考答案pdf、真题重组卷05新七省专用考试版pdf等3份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份真题重组卷04(2024新题型)-冲刺2024年高考数学真题重组卷(新高考新题型专用),文件包含真题重组卷04新七省专用解析版pdf、真题重组卷04新七省专用参考答案pdf、真题重组卷04新七省专用考试版pdf等3份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份真题重组卷02(2024新题型)-冲刺2024年高考数学真题重组卷(新高考新题型专用)数学试卷含解析,文件包含真题重组卷02新七省专用解析版pdf、真题重组卷02新七省专用参考答案pdf、真题重组卷02新七省专用考试版pdf等3份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。