搜索
    上传资料 赚现金
    英语朗读宝

    高中物理新教材同步选择性必修第一册 主题3 微型专题 几何光学的原理及应用同步讲义

    高中物理新教材同步选择性必修第一册 主题3 微型专题 几何光学的原理及应用同步讲义第1页
    高中物理新教材同步选择性必修第一册 主题3 微型专题 几何光学的原理及应用同步讲义第2页
    高中物理新教材同步选择性必修第一册 主题3 微型专题 几何光学的原理及应用同步讲义第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中物理新教材同步选择性必修第一册 主题3 微型专题 几何光学的原理及应用同步讲义

    展开

    这是一份高中物理新教材同步选择性必修第一册 主题3 微型专题 几何光学的原理及应用同步讲义,共14页。
    微型专题 几何光学的原理及应用[学科素养与目标要求] 物理观念:1.知道光的直线传播规律.2.知道光的反射定律、折射定律和全反射的规律.3.知道光的可逆原理.科学思维:1.会根据几何光学的基本原理画出光路图.2.会利用几何关系找出相应的角、边关系.一、几何光学的基本原理及应用几何光学就是以光线为工具,研究光的传播规律.解几何光学的题目,首先根据几何光学的基本原理画出光路图,然后利用几何关系找出相应的角、边关系.几何光学研究的是光线传播的规律,主要包括五条基本规律.1.光的直线传播规律:光在同一种均匀介质中沿直线传播2.光的反射定律(1)反射光线与入射光线、法线在同一平面内,反射光线、入射光线分居在法线两侧.(2)反射角等于入射角.3.光的折射定律折射光线与入射光线、法线在同一平面内,折射光线、入射光线分居在法线两侧;入射角的正弦与折射角的正弦成正比.公式:n12=eq \f(sin θ1,sin θ2).其中θ1为入射光线与法线的夹角,θ2为折射光线与法线的夹角.4.光的全反射规律发生全反射的条件是:(1)由光密介质射向光疏介质;(2)入射角θ≥临界角C,其中sin C=eq \f(1,n).5.光的可逆原理在反射、折射和直线传播中,光路都是可逆的.例1 如图1所示,一棱镜的截面为直角三角形ABC,∠A=30°,斜边AB=a.棱镜材料的折射率为eq \r(2).在此截面所在的平面内,一条光线以45°的入射角从AC边的中点M射入棱镜.画出光路图,并求光线从棱镜射出的点的位置(不考虑光线沿原路返回的情况).图1答案 见解析解析 设入射角为θ1,折射角为θ2,由折射定律得eq \f(sin θ1,sin θ2)=n①由已知条件及①式得θ2=30°②如果入射光线在法线的右侧,光路图如图甲所示.设出射点为F,由θ2=30°得光线垂直于AB射出,且由几何关系可得AF=eq \f(3,8)a③甲即出射点在AB边上离A点eq \f(3,8)a的位置.如果入射光线在法线的左侧,光路图如图乙所示.乙设折射光线与AB边的交点为D.由几何关系可知,在D点的入射角θ=60°④设全反射的临界角为C,则sin C=eq \f(1,n)⑤由⑤式和已知条件得C=45°⑥因此,光在D点发生全反射.设此光线的出射点为E,由几何关系得∠DEB=90°,BD=a-2AF⑦BE=BDsin 30°⑧联立③⑦⑧式得BE=eq \f(1,8)a即出射点在BC边上离B点eq \f(1,8)a的位置.求解几何光学的题目首先要画出光路图,然后利用相应的公式结合几何知识分析边、角关系.而光从光密介质射到光疏介质时,首先要判断是否发生了全反射.二、全反射和临界角的综合问题分析光的全反射、临界角问题的一般思路(1)确定光是由光疏介质进入光密介质,还是由光密介质进入光疏介质.(2)若光是由光密介质进入光疏介质,根据公式sin C=eq \f(1,n)确定临界角.(3)画出恰好发生全反射的光路图,利用几何知识分析边、角关系,找出临界角.(4)以恰好发生全反射的光线为比较对象来判断其他光线是否发生全反射,从而画出其他光线的光路图.例2 (2018·全国卷Ⅱ)如图2,△ABC是一直角三棱镜的横截面,∠A=90°,∠B=60°.一细光束从BC边的D点折射后,射到AC边的E点,发生全反射后经AB边的F点射出.EG垂直于AC交BC于G,D恰好是CG的中点.不计多次反射.图2(1)求出射光相对于D点的入射光的偏角;(2)为实现上述光路,棱镜折射率的取值应在什么范围?答案 (1)60° (2)eq \f(2\r(3),3)≤nnsin i3⑦式中C是全反射临界角,满足nsin C=1⑧由④⑦⑧式知,棱镜的折射率n的取值范围应为eq \f(2\r(3),3)≤nθ⑤光线在玻璃砖内会发生三次全反射,最后由G点射出,如图乙,乙由反射定律和几何关系得OG=OC=eq \f(\r(3),2)R⑥射到G点的光有一部分被反射,沿原路返回到达C点射出.1.(2018·西安中学高二第二学期期中)如图1所示,△ABC为一直角三棱镜的横截面,∠BAC=30°,现有两条间距为d的平行单色光线垂直于AB面射入三棱镜,已知棱镜对该单色光的折射率为eq \r(3).图1(1)若两条单色光线均能从AC面射出,求两条单色光线从AC面射出后的距离;(2)若第三条单色光线垂直于AB面射入三棱镜,到达AC面恰好能发生全反射,若真空中光速为c,求这条光线在三棱镜中的传播速度.答案 见解析解析 (1)如图所示,两条单色光线在AC面的折射点分别为D、E,由图中几何关系可知,入射角i=30°则根据光的折射定律有eq \f(sin r,sin i)=n得r=60°在直角三角形DEF中∠EDF=30°所以EF=eq \f(1,2)DE=eq \f(1,2)·eq \f(d,cos 30°)=eq \f(\r(3),3)d.(2)由题意结合光路图知入射的临界角为30°,n2=eq \f(1,sin 30°)=2,则光在三棱镜中的传播速度v=eq \f(c,2).2.(2018·唐山一中高二第二学期期中)如图2所示为安全防盗门上的观察孔(俗称“猫眼”),直径为d,为了扩大向外观察的范围,在孔中完全嵌入折射率为n=eq \r(3)的玻璃,玻璃由圆柱体和顶角为60°的球冠组成,猫眼的平面部分正好和安全门内表面平齐,球冠的边缘恰好和防盗门外表面平齐.若要让房间里的人能看到门外全部的景象,门的厚度不能超过多少?图2答案 eq \f(\r(3),3)d解析 若要让房间的人能看到门外全部的景象,则沿平行门方向射向C处的光线能够折射经过A点即可.光路如图所示:根据光的折射定律有eq \f(sin 60°,sin γ)=n可得γ=30°由几何关系知∠CAB=30°则门的厚度最大为BC=ABtan 30°=eq \f(\r(3),3)d.3.(2018·青岛一中高二第二学期第一次模拟考试)如图3所示是一个半球形透明物体的侧视图,现在有一细束单色光沿半径OA方向入射,保持入射方向不变,不考虑光线在透明物体内部的反射.图3(1)将细光束平移到距O点eq \f(\r(3),3)R处的C点,此时透明物体左侧恰好不再有光线射出,求透明物体对该单色光的折射率;(2)若细光束平移到距O点0.5R处,求出射光线与OA轴线的交点与O点的距离.答案 (1)eq \r(3) (2)eq \r(3)R解析 (1)如图甲所示,甲光束由C处水平射入,在B处恰好发生全反射,∠OBC为临界角,由几何关系有sin ∠OBC=eq \f(\f(\r(3),3)R,R)=eq \f(\r(3),3),则折射率n=eq \f(1,sin ∠OBC)=eq \r(3).(2)如图乙所示,乙光束由D点水平射入,在E点发生折射,入射角为∠OED=α,折射角为∠NEF=β,折射率n=eq \f(sin β,sin α)=eq \r(3),sin α=eq \f(\f(1,2)R,R)=eq \f(1,2)联立解得:sin β=eq \f(\r(3),2),β=60°由几何关系可知:∠FOE=α=30°,∠OFE=β-α=30°=α,则出射光线与OA轴线的交点F与O点的距离为:OF=2Rcos 30°=eq \r(3)R.4.(2018·四川宜宾一诊)如图4所示,横截面为直角三角形的玻璃砖ABC,AC边长为L,∠B=30°.两条同种色光的光线P、Q,从AC边中点射入玻璃砖,其中光线P垂直AC边,光线Q与AC边夹角为45°.发现光线Q第一次到达BC边后垂直BC边射出,已知真空中的光速为c.求:图4(1)玻璃砖的折射率.(2)光线P由进入玻璃砖到第一次从BC边射出经过的时间.答案 (1)eq \r(2) (2)eq \f(5\r(6)L,6c)解析 (1)作出光路图如图所示:光线Q在AC边的入射角i=45°由几何关系可知在AC边的折射角r=30°由折射定律得n=eq \f(sin i,sin r)=eq \r(2)(2)光线P在玻璃砖中传播时s1=eq \f(L,2tan 30°)=eq \f(\r(3),2)Ls2=eq \f(L,2cos 30°)=eq \f(\r(3),3)LP在玻璃砖内传播的速度v=eq \f(c,n),则所要求的时间为t=eq \f(s1+s2,v)由以上各式可得t=eq \f(5\r(6)L,6c).5.如图5所示,圆形的光学仪器(斜线阴影)内有一个半径为2R的圆形空腔,空腔左面侧壁上有一台激光器,可以沿空腔的直径方向发出在真空中速度为c的激光束.空腔中放置了一个比空腔略小(半径可视为2R)的折射率为2的透明圆柱状光学材料,光学材料的圆心在空腔的圆心O点,并且材料中被挖掉了一块半径为R的截面为半圆形的柱体(圆心和O点重合),挖掉的部分为真空.(反射与折射在同一界面时只考虑折射)图5(1)求激光从发出到照射到空腔壁的时间.(2)激光器始终开启,若光学材料围绕空腔圆心O点顺时针转动90°,空腔壁上能被激光照射到的圆弧长度为多少?(只考虑反射光线照射的圆弧长度)答案 (1)eq \f(7R,c) (2)eq \f(2πR,3)解析 (1)光在半圆真空中的传播时间为t1=eq \f(R,c)光学材料中光速为v=eq \f(c,n),传播距离为3R传播时间为:t2=eq \f(3R,v)=eq \f(6R,c)总时间t=t1+t2=eq \f(7R,c)(2)在O处,光从光密介质射入光疏介质,设发生全反射的临界角为C,则sin C=eq \f(1,n),解得C=30°,所以照射的弧长范围为l=eq \f(2πR,3).6.如图6所示,由两种不同透明介质制成的直角三棱镜甲和乙,并排放在一起刚好构成一截面为正三角形的棱镜,甲的折射率为n1=1.5,一细光束由AB边的中点O斜射入棱镜甲,已知入射光线在AB边的入射角的正弦值为sin i=0.75,经折射后该光束刚好在棱镜乙的AC边发生全反射,最后从BC边射出,已知真空中的光速为c=3×108 m/s,AB边的长度为l=6 cm,求该细光束在棱镜中的传播时间.图6答案 3.75×10-10 s解析 由题意可知该细光束在棱镜甲中的传播速度为:v1=eq \f(c,n1)=2×108 m/s设该细光束在AB边的折射角为θ,由折射定律可得:n1=eq \f(sin i,sin θ),得到:θ=30°由几何关系可知,细光束在棱镜甲中的折射光线与AB边的夹角为90°-30°=60°,故折射光线与底边BC平行,光线进入棱镜乙时传播方向不变.因光束刚好在AC边发生全反射,由几何知识得到,光线在AC边的入射角为90°-60°=30°,即发生全反射的临界角为:C=30°设棱镜乙的折射率为n2,则有sin C=eq \f(1,n2),得到:n2=2,则该细光束在棱镜乙中的传播速度为v2=eq \f(c,n2)=1.5×108 m/s由几何关系可知:OE=eq \f(l,4)=1.5 cm,EF=eq \f(l,4)=1.5 cm,FD=eq \f(l,2)=3 cm则该光束在棱镜中的传播时间为:t=eq \f(OE,v1)+eq \f(EF+FD,v2)=3.75×10-10 s.7.(2018·沈阳东北育才学校高二下学期期中)如图7所示,有一透明玻璃砖的截面,其上面的部分是半径为R的半圆,下面是边长为2R的正方形,在玻璃砖的两侧面距离R处,分别放置和侧面平行的足够大的光屏,已知玻璃砖的折射率n=eq \f(5,3),一束光线按图示方向从左侧光屏的P点射出,过M点射入玻璃砖,恰好经过半圆部分的圆心O,且∠MOA=45°,光在真空中的传播速度为c.求:图7(1)光在玻璃砖中发生全反射的临界角;(2)光从P点发出到第一次传播到右侧光屏上所用的时间.答案 (1)37° (2)eq \f(32\r(2)+4R,3c)解析 (1)设光在玻璃砖中发生全反射的临界角为C,则:n=eq \f(1,sin C),解得:sin C=eq \f(3,5),C=37°(2)由于光射到玻璃砖的平面上时的入射角均为i=45°>C=37°,则射到玻璃砖面上的光线发生全反射,其光路图如图所示.由几何知识可得,光在玻璃砖和光屏之间传播的距离x1=2(2eq \r(2)-1)R传播的时间t1=eq \f(x1,c)=eq \f(4\r(2)-2R,c)光在玻璃砖内传播的距离:x2=(4eq \r(2)+2)R光在玻璃砖内传播的速度为v=eq \f(c,n)=eq \f(3,5)c光在玻璃砖内传播的时间t2=eq \f(x2,v)=eq \f(20\r(2)+10R,3c)光从P点发出到第一次传播到右侧光屏上所用时间:t=t1+t2=eq \f(32\r(2)+4R,3c).

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map