所属成套资源:全套2024届高考物理二轮复习课时学案+教学课件
2024届高考物理二轮复习第3讲力与曲线运动学案
展开
这是一份2024届高考物理二轮复习第3讲力与曲线运动学案,共29页。
命题分类剖析
命题点一 运动的合成与分解 平抛运动(含类平抛)
1.曲线运动
2.特点
(1)F合恒定:做匀变速曲线运动.
(2)F合不恒定:做非匀变速曲线运动.
(3)速率变化情况判断
3.平抛运动的二级结论
(1)做平抛运动的物体在任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,则tan α=yx2.
(2)做平抛运动的物体在任一时刻任一位置处,其速度与水平方向的夹角α的正切值,是位移与水平方向的夹角θ的正切值的2倍,即tanα=2tanθ.
考向1 曲线运动的特点及运动的合成与分解
例 1 [2023·全国乙卷]小车在水平地面上沿轨道从左向右运动,动能一直增加.如果用带箭头的线段表示小车在轨道上相应位置处所受合力,下列四幅图可能正确的是( )
例 2 [2023·江苏卷]达·芬奇的手稿中描述了这样一个实验:一个罐子在空中沿水平直线向右做匀加速运动,沿途连续漏出沙子.若不计空气阻力,则下列图中能反映空中沙子排列的几何图形是( )
考向2 平抛运动规律的基本应用
例 3 [2023·浙江6月]铅球被水平推出后的运动过程中,不计空气阻力,下列关于铅球在空中运动时的加速度大小a、速度大小v、动能Ek和机械能E随运动时间t的变化关系中,正确的是( )
[解题心得]
考向3 有约束条件的平抛运动
例 4 [2023·清华大学附中开学考试]2022年第24届冬季奥林匹克运动会在北京和张家口举行,跳台滑雪是其中最具观赏性的项目之一.如图为简化的跳台滑雪的雪道示意图,AO为助滑道,OB为着陆坡.运动员从助滑道上的A点由静止滑下,然后从O点沿水平方向飞出,最后在着陆坡上着陆.已知,A点与O点的高度差为h=3.2 m,着陆坡OB的倾角为θ=37°,运动员及装备的总质量为m=50 kg,重力加速度为g=10 m/s2.将运动员和滑雪板整体看作质点,不计一切摩擦和空气阻力(sin 37°=0.6;cs 37°=0.8).求:
(1)运动员经过O点时的速度大小v;
(2)运动员从飞出到着陆的时间t;
(3)运动员在坡上着落时的速度大小v1;
(4)运动员在着落前距斜坡的最大垂直距离d.
考向4 带电粒子在匀强电场中的类平抛运动
例 5 [2023·重庆模拟预测]如图装置是由粒子加速器和平移器组成,平移器由两对水平放置、间距为Δd的相同平行金属板构成,极板间距离和板长均为L.加速电压为U0,两对极板间偏转电压大小相等均为U0,电场方向相反.质量为m,电荷量为+q的粒子无初速地进入加速电场,被加速器加速后,从平移器下板边缘水平进入平移器,最终从平移器上板边缘水平离开,不计重力.下列说法正确的是( )
A.粒子离开加速器时速度v0=qU0m
B.粒子通过左侧平移器时,竖直方向位移y1=L4
C.Δd与2L相等
D.只增加加速电压,粒子将不能从平移器离开
思维提升
求解平抛运动问题的技巧
①把运动分解为相互垂直方向上的匀速直线运动和匀加速直线运动,通过研究分运动达到研究合运动的目的.
②确定速度或位移与题目所给的角度之间的联系,这往往是解决问题的突破口.
提升训练
1. [2023·广东广州二模]潜艇从海水的高密度区驶入低密度区.浮力急剧减小的过程称为“掉深”.如图a所示,某潜艇在高密度区水平向右匀速航行,t=0时,该潜艇开始“掉深”,潜艇“掉深”后,其竖直方向的速度vy随时间变化的图像如图b所示,水平速度vx保持不变.若以水平向右为x轴,竖直向下为y轴,则潜艇“掉深”后的0~30 s内.能大致表示其运动轨迹的图形是( )
2.[2023·湖南卷]如图(a),我国某些农村地区人们用手抛撒谷粒进行水稻播种.某次抛出的谷粒中有两颗的运动轨迹如图(b)所示,其轨迹在同一竖直平面内,抛出点均为O,且轨迹交于P点,抛出时谷粒1和谷粒2的初速度分别为v1和v2,其中v1方向水平,v2方向斜向上.忽略空气阻力,关于两谷粒在空中的运动,下列说法正确的是( )
A.谷粒1的加速度小于谷粒2的加速度
B.谷粒2在最高点的速度小于v1
C.两谷粒从O到P的运动时间相等
D.两谷粒从O到P的平均速度相等
3.[2023·福建龙岩一中模拟]如图所示,排球比赛中,某队员在距网水平距离为4.8 m,距地面3.2 m高处(O点正上方)将排球沿垂直网的方向以16 m/s的速度水平击出.已知网高2.24 m,排球场地长18 m,重力加速度g取10 m/s2,可将排球视为质点,下列判断正确的是( )
A.球不能过网
B.球落在对方场地内
C.球落在对方场地底线上
D.球落在对方场地底线之外
命题点二 圆周运动
1.水平面内的圆周运动的“临界”分析
(1)绳的临界:张力FT=0
(2)接触面滑动临界:F=Ffm
(3)接触面分离临界:FN=0
2.竖直面内圆周运动分析步骤:
(1)定模型→判断是轻杆模型还是轻绳模型
(2)
(3)过程分析→应用动能定理或机械能守恒定律将初、末状态联系起来列方程求解
考向1 描述圆周运动的物理量
例 1 [2023·湖南衡阳考试]如图甲所示是古代用牛车灌溉时的场景,其简化图如图乙所示,已知A、B、C三个圆的半径分别为rA、rB、rC,C每转一圈能将8个相同竹筒中的水(质量均为m)灌溉到农田中,已知牛每分钟牵引中柱转动n圈,则一个小时内该牛车对农田灌溉水的质量为( )
A.480nrArBm B.60nrArB2m
C.60nrArCm D.480nrBrCm
考向2 水平面内的圆周运动问题
例 2 [2023·北京卷]在太空实验室中可以利用匀速圆周运动测量小球质量.如图所示,不可伸长的轻绳一端固定于O点,另一端系一待测小球,使其绕O做匀速圆周运动,用力传感器测得绳上的拉力大小为F,用停表测得小球转过n圈所用的时间为t,用刻度尺测得O点到球心的距离为圆周运动的半径R.下列说法正确的是( )
A.圆周运动轨道可处于任意平面内
B.小球的质量为FRt24π2n2
C.若误将n-1圈记作n圈,则所得质量偏大
D.若测R时未计入小球半径,则所得质量偏小
考向3 竖直面内的圆周运动问题
例 3 (多选)竖直平面内的圆周运动是物理学里的经典模型之一,某同学通过如图实验来探究其相关规律:质量为m的小球固定在力传感器测量的一侧,传感器另一侧固定在一端.现给小球一初速度让其绕O点做圆周运动,小球到O点的距离为L,已知当力传感器受到球对其为压力时,读数为负数,为拉力时,读数为正数,重力加速度为g.则下列说法正确的是( )
A.只有当小球通过圆周最高点的速度大于0时才能完成完整的圆周运动
B.若小球通过圆周最高点时速度为 gL3,则力传感器读数为-23mg
C.小球在与圆心等高的B点下方运动的过程中,力传感器读数总是正值
D.若小球通过圆周最低点时速度为2gL,则力传感器读数为mg
考向4 平抛运动与圆周运动组合问题
例 4 [2023·四川省凉山州试题]如图所示,长为l的轻质细线固定在O1点,细线的下端系一质量为m的小球,固定点O1的正下方0.5l处的P点可以垂直于竖直平面插入一颗钉子.现将小球从细线处于水平状态由静止释放,此时钉子还未插入P点,在B点右下方水平地面上固定有一半径为R=516l的光滑圆弧形槽,槽的圆心在O2,D点为最低点,且∠CO2D=37°,重力加速度为g,不计空气阻力.(已知sin 37°=0.6,cs 37°=0.8)求:
(1)小球运动到B点时的速度大小;
(2)如果钉子插入P点后,小球仍然从A点静止释放,到达B点时,绳子恰好被拉断,求绳子能承受的最大拉力;
(3)在第(2)问的情况下,小球恰好从槽的C点无碰撞地进入槽内,求整个过程中小球对槽的最大压力.
思维提升
解决平抛与圆周运动组合问题的“四个关键”
(1)运动阶段的划分,如例题中分成三个阶段(圆周→平抛→圆周).
(2)运动阶段的衔接,尤其注意速度方向,如例题中,小球运动到B点的速度.
(3)两个运动阶段在时间和空间上的联系.
(4)对于平抛运动或类平抛运动与圆周运动组合的问题,应用合成与分解的思想分析,这两种运动转折点的速度是解题的关键.
提升训练
1.在东北严寒的冬天,人们经常玩一项“泼水成冰”的游戏,具体操作是把一杯开水沿弧线均匀快速地泼向空中.图甲所示是某人玩“泼水成冰”游戏的瞬间,其示意图如图乙所示.若泼水过程中杯子的运动可看成匀速圆周运动,人的手臂伸直.在0.5 s内带动杯子旋转了210°,人的臂长约为0.6 m.下列说法正确的是( )
A.泼水时杯子的旋转方向为顺时针方向
B.P位置飞出的小水珠初速度沿1方向
C.杯子在旋转时的角速度大小为7π6 rad/s
D.杯子在旋转时的线速度大小约为7π5 m/s
2.[2023·全国甲卷]一质点做匀速圆周运动,若其所受合力的大小与轨道半径的n次方成正比,运动周期与轨道半径成反比,则n等于( )
A.1 B.2 C.3 D.4
3.如图所示,物体A、B用细线连接,在同一高度做匀速圆周运动,圆心均为点O.在某时刻,细线同时断裂,两物体做平抛运动,同时落在水平面上的同一点.连接A、B的细线长度分别为10l、5l,A、B圆周运动的半径分别为6l、4l,则O点到水平面的高度为(忽略物体的大小和细线质量)( )
A.6l B.10l
C.12l D.15l
命题点三 天体的运动
1.两种卫星的特点
(1)近地卫星:①轨道半径等于地球半径;②卫星所受万有引力等于重力mg;③卫星向心加速度即为重力加速度.
(2)同步卫星:①同步卫星的周期等于地球的自转周期;②所有地球同步卫星都在赤道正上空相同的高度上(六个“一定”).
2.巧用“一模型、两思路”解答卫星运行参量问题
(1)一种模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可以看作质点,围绕中心天体(视为静止)做匀速圆周运动.
(2)两条思路
①万有引力提供向心力,即GMmr2=mv2r=mω2r=m4π2T2r=ma.
②天体对其表面物体的万有引力近似等于重力,即GMmR2=mg或gR2=GM(R、g分别是天体的半径、表面重力加速度)(黄金代换).
3.卫星变轨和能量问题
(1)点火加速,v突然增大,GMmr2<mv2r,卫星将做离心运动.
(2)点火减速,v突然减小,GMmr2>mv2r,卫星将做近心运动.
(3)同一卫星在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.
(4)卫星经过不同轨道相切的同一点时加速度相等,在切点处,外轨道的速度大于内轨道的速度.
考向1 卫星运动的特点
例 1 [2023·北京卷]2022年10月9日,我国综合性太阳探测卫星“夸父一号”成功发射,实现了对太阳探测的跨越式突破.“夸父一号”卫星绕地球做匀速圆周运动,距地面高度约为720 km,运行一圈所用时间约为100分钟.如图所示,为了随时跟踪和观测太阳的活动,“夸父一号”在随地球绕太阳公转的过程中,需要其轨道平面始终与太阳保持固定的取向,使太阳光能照射到“夸父一号”,下列说法正确的是( )
A.“夸父一号”的运行轨道平面平均每天转动的角度约为1°
B.“夸父一号”绕地球做圆周运动的速度大于7.9 km/s
C.“夸父一号”绕地球做圆周运动的向心加速度大于地球表面的重力加速度
D.由题干信息,根据开普勒第三定律,可求出日地间平均距离
例 2 [2023·湖北卷]2022年12月8日,地球恰好运行到火星和太阳之间,且三者几乎排成一条直线,此现象被称为“火星冲日”.火星和地球几乎在同一平面内沿同一方向绕太阳做圆周运动,火星与地球的公转轨道半径之比约为3∶2,如图所示.根据以上信息可以得出( )
A.火星与地球绕太阳运动的周期之比约为27∶8
B.当火星与地球相距最远时,两者的相对速度最大
C.火星与地球表面的自由落体加速度大小之比约为9∶4
D.下一次“火星冲日”将出现在2023年12月8日之前
考向2 天体密度、质量的估算
例 3 [2023·辽宁卷]在地球上观察,月球和太阳的角直径(直径对应的张角)近似相等,如图所示.若月球绕地球运动的周期为T1,地球绕太阳运动的周期为T2,地球半径是月球半径的k倍,则地球与太阳的平均密度之比约为( )
A.k3T1T22 B.k3T2T12
C.1k3T1T22 D.1k3T2T12
考向3 卫星变轨和空间站对接问题
例 4 [2023·四川省宜宾市叙州区模拟]
2022年11月30日,神舟十五号载人飞船与天和核心舱完成对接,如图为对接过程的示意图.天和核心舱做圆周运动的轨道半径为R,运动周期为T,神舟十五号飞船在火箭助推下由地表加速至A点,在此处神舟十五号飞船与火箭分离,分离后神舟十五号飞船在万有引力作用下沿椭圆轨道运动至B点与天和核心舱对接,椭圆轨道AB在B点与天和核心舱轨道相切,B点为椭圆轨道AB的远地点,已知引力常量为G.下列说法正确的是( )
A.A点到地心的距离小于B点到地心的距离,飞船在A点的速率小于在B点的速率
B.飞船沿椭圆轨道AB运行的周期小于T
C.飞船在整个运动过程中,机械能不断增大
D.飞船运动至B点时其速率大于天和核心舱的速率
提升训练
1.[2023·大连葫芦岛一模]2022年11月12日10时03分,天舟五号与空间站天和核心舱成功对接,此次发射任务从点火发射到完成交会对接,全程仅用2个小时,创世界最快交会对接纪录,标志着我国航天交会对接技术取得了新突破.在交会对接的最后阶段,天舟五号与空间站处于同一轨道上,同向运动,两者的运行轨道均视为圆周.要使天舟五号在同一轨道上追上空间站实现“交会对接”,天舟五号喷射燃气的方向可能正确的是( )
2.[2023·湖北省部分地市1月联合调研](多选)
2022年10月,我国发射“夸父一号”太阳探测卫星,该卫星采用的是距地面高度720 km左右、周期约为100分钟的太阳同步晨昏轨道.所谓太阳同步晨昏轨道,从宇宙中看,就是卫星一方面围绕地球飞行(看成匀速圆周运动)且跟随着地球绕太阳公转,另一方面轨道平面一直朝向太阳.下列说法正确的是( )
A.“夸父一号”的发射速度大于11.2 km/s
B.以太阳为参考系,“夸父一号”做匀速圆周运动
C.“夸父一号”绕地球运行的角速度大于地球的自转角速度
D.“夸父一号”连续两次经过地球赤道上同一位置正上空所用的时间间隔约为120小时
3.
[2023·陕西省西安市长安区质量检测](多选)清华大学天文系祝伟教授牵头的国际团队在宇宙中发现了两个罕见的恒星系统.该系统均是由两颗互相绕行的中央恒星组成,被气体和尘埃盘包围,且该盘与中央恒星的轨道成一定角度,呈现出“雾绕双星”的奇幻效果.如图所示为该“双星模型”的简化图,恒星P、Q绕它们之间连线上的O点做匀速圆周运动.已知O1O2=L1,O1O-OO2=L2,假设两恒星的半径远小于恒星之间的距离.下列说法正确的是( )
A.恒星P、Q的轨道半径之比为L1∶L2
B.恒星P的质量大于恒星Q的质量
C.恒星P、Q的线速度大小之和与线速度大小之差的比值为L1L2
D.恒星P、Q的质量之和与质量之差的比值为L1L2
素养培优·情境命题
生活·科技中的曲线运动
情境1 排污管——科学思维
[典例1] [2023·北京海淀区高三上学期期中]环保人员在一次检查时发现,有一根排污管正在沿水平方向向河道内排出大量污水,如图所示.水流稳定时,环保人员测出了管口中心到河面的高度为H,喷出污水的水平射程为L,管口的直径为D(D远小于H).设污水充满整根管道,管口横截面上各处水的速度相同,忽略空气阻力,已知重力加速度为g.求:
(1)污水从排污管喷出时初速度的大小v0;
(2)污水落至河面时速度的大小v;
(3)由管口至河面间空中污水的体积A.
情境2 水平旋转离心机—— 科学态度与责任
[典例2] [2023·辽宁沈阳联考模拟预测]图(a)为航天员“负荷”训练的载人水平旋转离心机,离心机旋转臂的旋转半径为R=8 m,图(b)为在离心机旋转臂末端模拟座舱中质量为m的航天员.一次训练时,离心机的转速为n=90π r/min,航天员可视为质点,重力加速度g取10 m/s2.下列说法正确的是( )
A.航天员处于完全失重状态
B.航天员运动的线速度大小为12 m/s
C.航天员做匀速圆周运动需要的向心力为72 N
D.航天员承受座舱对他的作用力大于7.2mg
情境3 智能呼啦圈——模型建构
[典例3] 智能呼啦圈轻便美观,深受大众喜爱,如图甲,腰带外侧带有轨道,将带有滑轮的短杆穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示.可视为质点的配重质量为0.5 kg,绳长为0.5 m,悬挂点P到腰带中心点O的距离为0.2 m.水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看作不动,重力加速度g取10 m/s2,sin 37°=0.6,下列说法正确的是( )
A.匀速转动时,配重受到的合力恒定
B.若增大转速,腰带受到的合力变大
C.当θ稳定在37°时,配重的角速度为5 rad/s
D.在θ由37°缓慢增加到53°的过程中,绳子对配重做正功
情境4 螺旋星系——科学探究
[典例4] [2023·北京卷] 螺旋星系中有大量的恒星和星际物质,主要分布在半径为R的球体内,球体外仅有极少的恒星.球体内物质总质量为M,可认为均匀分布,球体内外的所有恒星都绕星系中心做匀速圆周运动,恒星到星系中心的距离为r,引力常量为G.
(1)求r>R区域的恒星做匀速圆周运动的速度大小v与r的关系;
(2)根据电荷均匀分布的球壳内试探电荷所受库仑力的合力为零,利用库仑力与万有引力的表达式的相似性和相关力学知识,求r≤R区域的恒星做匀速圆周运动的速度大小v与r的关系;
(3)
科学家根据实测数据,得到此螺旋星系中不同位置的恒星做匀速圆周运动的速度大小v随r的变化关系图像,如图所示.根据在r>R范围内的恒星速度大小几乎不变,科学家预言螺旋星系周围(r>R)存在一种特殊物质,称之为暗物质.暗物质与通常的物质有引力相互作用,并遵循万有引力定律,求r=nR内暗物质的质量M′.
第3讲 力与曲线运动
命题分类剖析
命题点一
[例1] 解析:小车做曲线运动,所受合外力指向曲线的凹侧,故AB错误;小车沿轨道从左向右运动,动能一直增加,故合外力与运动方向夹角为锐角,C错误,D正确.故选D.
答案:D
[例2] 解析:罐子在空中沿水平直线向右做匀加速运动,在时间Δt内水平方向位移增加量为aΔt2,竖直方向做自由落体运动,在时间Δt内位移增加gΔt2;说明水平方向位移增加量与竖直方向位移增加量比值一定,则连线的倾角就是一定的.故选D.
答案:D
[例3] 解析:由于不计空气阻力,铅球被水平推出后只受重力作用,加速度等于重力加速度,不随时间改变,故A错误;铅球被水平推出后做平抛运动,竖直方向有vy=gt,则抛出后速度大小为v=v02 +gt2,可知速度大小与时间不是一次函数关系,故B错误;铅球抛出后的动能Ek=12mv2=12m[v02+(gt)2],可知动能与时间不是一次函数关系,故C错误;铅球水平抛出后由于忽略空气阻力,所以抛出后铅球机械能守恒,故D正确.
答案:D
[例4] 解析:(1)AO段,由动能定理mgh=12mv2
得运动员经过O点时的速度大小为v=8 m/s.
(2)从O点飞出后,做平抛运动,根据平抛运动规律
x=vt,y=12gt2
由题意可得yx=tan θ,解得t=2vtanθg=1.2 s.
(3)运动员在坡上着落时竖直分速度为vy=gt=12 m/s
故着落时的速度大小为v1=v2+vy2 =413 m/s.
(4)
将做平抛运动的初速度v和重力加速度g沿斜坡方向和垂直斜坡方向正交分解,如图所示
当在垂直斜坡方向上的分速度减为零时,运动员距斜坡的垂直距离最大,根据运动学公式可得运动员在着落前距斜坡的最大垂直距离为d=v12 2g1=vsinθ22gcsθ=1.44 m.
答案:(1)8 m/s (2)1.2 s (3)413 m/s (4)1.44 m
[例5] 解析:根据qU0=12mv02
粒子离开加速器时速度为v0= 2qU0m,故A错误;
粒子平移器电场中的偏转量为y1=12at2
又qU0L=ma ,L=v0t
得y1=L4,故B正确;
根据类平抛运动的特点和对称性,粒子在两平移器之间做匀速直线运动的轨迹延长线分别过平行板中点,根据几何关系可知Δd=L,故C错误;
由B选项可得y1=qU0L2mv02
由A选项可知当加速电压增大时,粒子进入平移器的速度增大,粒子在平移器中竖直方向偏转量变小,粒子可以离开平移器,位置比原来靠下,故D错误.故选B.
答案:B
[提升训练]
1.解析:根据题意可知,潜艇在x轴方向上做匀速直线运动,y轴方向上先做匀加速直线运动,再做匀减速直线运动,在x轴上取几段相邻且距离相等的距离,则时间相等,y轴上下降的距离先增大后减小.故选B.
答案:B
2.解析:抛出的两谷粒在空中均仅受重力作用,加速度均为重力加速度,故谷粒1的加速度等于谷粒2的加速度,A错误;谷粒2做斜抛运动,谷粒1做平抛运动,均从O点运动到P点,故位移相同.在竖直方向上谷粒2做竖直上抛运动,谷粒1做自由落体运动,竖直方向上谷粒2的自由落体运动位移大于谷粒1的竖直位移,故谷粒2运动时间较长,C错误;谷粒2做斜抛运动,水平方向上为匀速直线运动,故运动到最高点的速度即为水平方向上的分速度.与谷粒1比较水平位移相同,但运动时间较长,故谷粒2水平方向上的速度较小即最高点的速度小于v1,B正确;两谷粒从O点运动到P点的位移相同,运动时间不同,故平均速度不相等,D错误.
答案:B
3.解析:由题意可得,排球刚好到达网正上方的时间为t=xv=4.816 s=0.3 s,此时间内排球下降的高度为h=12gt2=0.45 m,因为Δh=3.2 m-0.45 m=2.75 m>2.24 m,所以排球能越过网,排球落到地面的时间为t′=2h'g=2×3.210 s=0.8 s,则排球落地时的水平位移大小为x′=vt′=16×0.8 m=12.8 m.因为击球点到对方底线的水平距离为x″=4.8 m+9 m=13.8 m>12.8 m,所以排球落在对方场地内.
答案:B
命题点二
[例1] 解析:根据图乙可知,中柱和A的转速相同,有
vA=2πrAT=2πnrA60s
A和B边缘的线速度大小相等,有vA=vB
B和C的角速度相同,则有ωB=ωC
则C的转速为nC=ωC2π=nrA60rB r/s
则一个小时内牛车对农田灌溉水的质量为m总=3 600×8mnC=480nrArBm,故选A.
答案:A
[例2] 解析:空间站内的物体都处于完全失重状态,可知圆周运动的轨道可处于任意平面内,故A正确;
根据F=mω2R
ω=2πnt
解得小球质量m=Ft24π2n2R
故B错误;
若误将n-1圈记作n圈,则得到的质量偏小,故C错误;
若测R时未计入小球的半径,则R偏小,所测质量偏大,故D错误.故选A.
答案:A
[例3] 解析:轻杆模型中小球过圆周最高点速度大于0,选项A正确;在最高点受力分析有mg+F=mv2r,将v= gL3代入,解得F=-23mg,即小球受到向上的支持力,由牛顿第三定律可知传感器受到向下的压力,选项B正确;小球在与圆心等高的B点下方运动过程中,小球受到拉力,力传感器读数总是正值,选项C正确;在最低点受力分析有F-mg=mv2r,将速度为2gL代入,解得F=3mg,选项D错误.
答案:ABC
[例4] 解析:(1)设小球运动到B点的速度为vB,由A到B应用动能定理,mg·l=12mvB2
解得:vB=2gl.
(2)插入钉子后,小球再次经过B点时有:
F-mg=mvB2 0.5l
解得绳子能承受的最大拉力F=5mg.
(3)小球从B点开始做平抛运动,在C点时速度方向恰好沿轨道切线方向,即:
vC=vBcs37°
小球沿槽运动到最低点时对轨道的压力最大,小球从C到D过程中机械能守恒有:
mgR(1-cs 37°)=12mvD2 -12mv C2
在D点有:FN-mg=mvD2 R
解得槽对小球的支持力FN=11.4mg
由牛顿第三定律得小球对槽的最大压力为
F′N=11.4mg,方向竖直向下.
答案:(1)2gl (2)5mg (3)11.4mg,方向竖直向下
[提升训练]
1.解析:由图乙中飞出的小水珠的运动轨迹可知,泼水时杯子的旋转方向为逆时针方向,P位置飞出的小水珠初速度沿2方向,A、B错误.杯子旋转的角速度ω=ΔθΔt=7π60.5rad/s=7π3rad/s,C错误.杯子做匀速圆周运动(旋转)的轨迹半径约为0.6 m,则线速度大小约为v=ωr=7π3×0.6 m/s=7π5m/s,D正确.
答案:D
2.解析:质点做匀速圆周运动,根据题意设周期T=kr,合外力提供向心力,根据F合=Fn=m4π2T2r,联立可得,Fn=4mπ2k2r3,其中4mπ2k2为常数,r的指数为3,故题中,n=3,故选C.
答案:C
3.解析:
两球落地时水平方向的位移关系如图(两球运动的俯视图)
由几何关系可得xA2+(6l)2=xB2+(4l)2
由平抛规律可知水平方向xA=vAt,xB=vBt
下落的高度h=12gt2
小球做圆周运动时受力情况如图
由相似关系可得mg8l=mvA2 6l6l,mg3l=mvB2 4l4l
联立可得h=12l,故选C.
答案:C
命题点三
[例1] 解析:因为“夸父一号”轨道要始终保持有太阳光照射到,则在一年之内转动360°角,即轨道平面平均每天约转动1°,故A正确;
第一宇宙速度是所有绕地球做圆周运动的卫星的最大环绕速度,则“夸父一号”的速度小于7.9 km/s,故B错误;
根据GMmr2=ma可知“夸父一号”绕地球做圆周运动的向心加速度小于地球表面的重力加速度,故C错误;
“夸父一号”绕地球转动,地球绕太阳转动,中心天体不同,则根据题中信息不能求解地球与太阳的距离,故D错误.故选A.
答案:A
[例2] 解析:火星和地球均绕太阳运动,由于火星与地球的轨道半径之比约为3∶2,根据开普勒第三定律有r火3 r地3 =T火2 T地2 ,可得T火T地=r火3 r地3 =3322,故A错误;
火星和地球绕太阳匀速圆周运动,速度大小均不变,当火星与地球相距最远时,由于两者的速度方向相反,故此时两者相对速度最大,故B正确;
在星球表面根据万有引力定律有GMmr2=mg
由于不知道火星和地球的质量之比与半径之比,无法得出火星和地球表面的自由落体加速度之比,故C错误;
火星和地球绕太阳匀速圆周运动,有
ω火=2πT火,ω地=2πT地
要发生下一次火星冲日则有2πT地-2πT火t=2π
得t=T火T地T火-T地>T地
可知下一次“火星冲日”将出现在2023年12月18日之后,故D错误.故选B.
答案:B
[例3] 解析:设月球绕地球运动的轨道半径为r1,地球绕太阳运动的轨道半径为r2,根据GMmr2=m4π2T2r
其中r1r2=R月R日=R地kR日
ρ=m43πR3
联立可得ρ地ρ日=1k3T2T12,故选D.
答案:D
[例4] 解析:
B点为椭圆轨道AB的远地点,故BO大于AO,飞船由A点运动至B点的过程中,万有引力做负功,动能减少,故飞船在B点速率小于在A点的速率,选项A错误.B点为椭圆轨道AB的远地点,飞船做椭圆运动的轨道的半长轴小于天和核心舱做圆周运动的半径,根据开普勒第三定律可知,天和核心舱的周期大于飞船做椭圆运动的周期,选项B正确.飞船从地表运动至A点的过程中,火箭的推力对其做正功,飞船机械能增大,飞船由A点运动至B点的过程中,只有万有引力做功,引力势能与动能之和不变,机械能不变,选项C错误.飞船和天和核心舱在B点由万有引力产生的加速度相同,飞船在B点处(椭圆轨道的B点)的曲率半径更小,根据a=v2r,半径小则速率小,即飞船在B点处的速率小于天和核心舱的速率,选项D错误.
答案:B
[提升训练]
1.解析:要想使天舟五号在与空间站的同一轨道上对接,则需要使天舟五号加速,与此同时要想不脱离原轨道,根据F=mv2r则必须要增加向心力,即喷气时产生的推力一方面有沿轨道向前的分量,另一方面还要有指向地心的分量,而因喷气产生的推力与喷气方向相反,则图A是正确的.故选A.
答案:A
2.解析:由题意可知,“夸父一号”并未脱离地球引力束缚,仍靠地球引力提供向心力,所以发射速度不会大于11.2 km/s,A错误.以地球为参考系,“夸父一号”做匀速圆周运动,B错误.“夸父一号”的周期约为100 min,而地球的自转周期为24小时,所以TrQ,所以mQ>mP,B错误;P、Q的线速度大小分别为vP=ωrP、vQ=ωrQ,P、Q的线速度大小之和为Δv1=vP+vQ=ω(rP+rQ)=ωL1,P、Q的线速度大小之差为Δv2=vP-vQ=ω(rP-rQ)=ωL2,则Δv1Δv2=L1L2,C正确;对恒星P,由牛顿第二定律有GmPmQL12 =mPrPω2,则mQ=rPω2L12 G,同理对Q有GmPmQL12 =mQrQω2,则mP=rQω2L12 G,P、Q的质量之和为Δm1=mP+mQ=rQω2L12 G+rPω2L12 G=ω2L13 G,P、Q的质量之差为Δm2=mQ-mP=rPω2L12 G-rQω2L12 G=ω2L12 L2G,则Δm1Δm2=L1L2,D正确.
答案:CD
素养培优·情境命题
[典例1] 解析:(1)污水从管口离开后,做平抛运动,在竖直方向有H=12gt2
水平方向有L=v0t
解得v0=L g2H.
(2)设污水落入河道水面时,竖直方向有v y2=2gH
则污水落至河面时速度的大小为v=v02+vy2 = 2gH1+L24H2.
(3)单位时间内,从管口喷出的污水体积为Q=v0S=πD2L4 g2H
因此空中污水的体积为A=Qt=πD2L4.
答案:(1)L g2H (2) 2gH1+L24H2
(3)πD2L4
[典例2] 解析:航天员随离心机旋转臂在水平面内转动,在竖直方向受力平衡,不会处于完全失重状态,A错误;
航天员在旋转臂末端的座舱中,转速为n=90πr/min=32πr/s
线速度大小为v=2πRn=24 m/s,B错误;
航天员做匀速圆周运动的向心力大小为Fx=mv2R
由于不知道航天员质量的具体数值,故不能求出向心力的具体数值,C错误;
对航天员受力分析,在水平方向座舱对他的作用力提供向心力,可知座舱对航天员的水平作用力为Fx=mv2R=72m=7.2mg
竖直方向座舱对航天员的作用力为Fy=mg
可知座舱对航天员的作用力为F=Fy2+Fx2 >Fx=7.2mg,D正确.
答案:D
[典例3] 解析:
设配重的质量为m、绳长为l、悬挂点P到腰带中心点O的距离为r1,对配重受力分析如图所示,由于配重做匀速圆周运动,其受到的合力提供向心力,即合力大小不变、方向改变,故选项A错误;由于腰带固定不动,因此腰带所受的合力始终为零,故选项B错误;根据牛顿第二定律有mg tan θ=mω2(l sin θ+r1),代入数据可得ω=15 rad/s,故选项C错误;根据牛顿第二定律有mg tan θ=mv2lsinθ+r1,由动能定理有WF-mgl(cs 37°-cs 53°)=12mv22 -12mv12>0,可得绳子对配重做正功,故选项D正确.
答案:D
[典例4] 解析:(1)由万有引力定律和向心力公式有
GMmr2=mv2r
解得v= GMr.
(2)在r≤R内部,星体质量
M0=M43πR3·43πr3=Mr3R3
由万有引力定律和向心力公式有
GM0mr2=mv2r
解得v=rGMR 3.
(3)对处于R球体边缘的恒星,由万有引力定律和向心力公式有
GMmR2=mv02 R
对处于r=nR处的恒星,由万有引力定律和向心力公式有
GM+M'mnR2=mv02 nR
解得
M′=(n-1)M.
答案:(1) GMr (2)rGMR3 (3)(n-1)M
相关学案
这是一份2023届高考物理二轮复习学案:专题一+第三讲力与曲线运动,共6页。学案主要包含了体验高考,必备知识,关键能力典型练,学科素养提升练,核心素养归纳等内容,欢迎下载使用。
这是一份2023届高考物理二轮复习专题一第3讲力与曲线运动学案,共14页。
这是一份2023届高考物理二轮复习第3讲力与曲线运动学案(浙江专用),共30页。