所属成套资源:【期中复习】2023-2024学年(人教B版2019)高二数学下册期中复习之考点课件+专题训练
- 【期中复习】2023-2024学年(人教B版2019+选择性必修第三册)高二数学下册 专题04+数列考点串讲课件 课件 1 次下载
- 【期中复习】2023-2024学年(人教B版2019+选择性必修第二册)高二数学下册 专题01+排列、组合与二项式定理考点串讲课件 课件 1 次下载
- 【期中复习】2023-2024学年(人教B版2019+选择性必修第二册)高二数学下册 专题02+概率与统计考点串讲课件 课件 1 次下载
- 【期中模拟】2023-2024学年(人教B版2019选修二)高二数学下册易错 专题01+两个计数原理、排列组合专题训练.zip 试卷 0 次下载
- 【期中模拟】2023-2024学年(人教B版2019选修二)高二数学下册易错 专题02+二项式定理与杨辉三角专题训练.zip 试卷 0 次下载
【期中复习】2023-2024学年(人教B版2019+选择性必修第三册)高二数学下册 专题03+导数及其应用考点串讲课件
展开
这是一份【期中复习】2023-2024学年(人教B版2019+选择性必修第三册)高二数学下册 专题03+导数及其应用考点串讲课件,共60页。PPT课件主要包含了考场练兵,典例剖析,考点透视,知识点2导数的概念,fx0,不等式中不带“”,单调递增,单调递减,极值点是一个实数,连续不断等内容,欢迎下载使用。
知识点1.函数y=f(x)在x=x0处的导数
(2)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
(1)平均变化率:函数y=f(x)从x1到x2的平均变化率为__________,若Δx=x2-x1, Δy=f(x2)-f(x1),则平均变化率可表示为__________.
微思考函数y=f(x)从x1到x2的平均变化率的几何意义是什么?
提示 函数y=f(x)从x1到x2的平均变化率是指其图象上两点(x1,f(x1)),(x2,f(x2))连线的斜率.
导数是用极限来刻画的
(3)导函数:对于函数y=f(x),当x=x0时,f'(x0)是一个唯一确定的数,当x变化时,f'(x)就是x的函数,我们称它为函数y=f(x)的导函数(简称导数),即f'(x)=y'=____________________.
函数y=f(x)在x=x0处的导数f'(x0),就是曲线y=f(x)在x=x0处的切线的斜率k0,即k0=__________.
即在点(x0,f(x0))处
微思考已知函数y=f(x),给定一个点P(x0,y0),那么f'(x0)就是经过点P的切线的斜率吗?
提示 不一定,如果点P在函数y=f(x)的图象上,那么f'(x0)就是曲线在点P处的切线的斜率,如果点P不在函数y=f(x)的图象上,那么f'(x0)就不是曲线在点P处的切线的斜率.
知识点3.导数的几何意义
知识点4.函数的单调性与其导数的关系
微思考“函数f(x)在区间(a,b)内的导数大(小)于0”是“f(x)在区间(a,b)内单调递增(减)”的什么条件?
提示 充分不必要条件.若函数f(x)在区间(a,b)内的导数大(小)于0,则必有f(x)在区间(a,b)内单调递增(减),但反之不一定,例如f(x)=x3在R上单调递增,但f'(x)=3x2≥0.
微点拨 利用导数求函数单调区间的步骤(1)求函数的定义域;(2)求f(x)的导数f'(x);(3)在定义域内解不等式f'(x)>0的解集即为单调递增区间,f'(x)0(g(a)B.f(a)g(a)+f(b)D.f(a)+g(b)2时,f'(x)>0;当x
相关课件
这是一份【期中复习】2023-2024学年(人教A版2019选择性必修第三册)高二数学下册 专题03 第七章 随机变量及其分布列(考点串讲)-课件,共56页。PPT课件主要包含了典例剖析,考点透视,考场练兵,答案BCD,答案B,答案24,答案13,答案ACD,答案A,答案BD等内容,欢迎下载使用。
这是一份【期中复习】2023-2024学年(人教A版2019选择性必修第三册)高二数学下册 专题02 第六章 二项式定理(考点串讲)-课件,共50页。PPT课件主要包含了典例剖析,考点透视,考场练兵,答案D,答案448,答案C,考点题型五系数和,答案B,答案A,答案8等内容,欢迎下载使用。
这是一份【期中复习】2023-2024学年(人教A版2019选择性必修第三册)高二数学下册 专题01 第六章 两个计数原理及排列组合(考点串讲)-课件,共38页。PPT课件主要包含了典例剖析,考点透视,考场练兵,答案D,答案276,答案ACD,答案B,答案288,答案C,答案A等内容,欢迎下载使用。