【期中讲练测】北师大版七年级下册数学 期中解答题.zip
展开1.你会求(a﹣1)(a2018+a2017+a2016+…+a2+a+1)的值吗?
这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:
(a﹣1)(a+1)=a2﹣1
(a﹣1)(a2+a+1)=a3﹣1
(a﹣1)(a3+a2+a+1)=a4﹣1
(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2018+a2017+a2016+…+a2+a+1)=
利用上面的结论求
(2)22018+22017+22016+…+22+2+1的值.
(3)求52018+52017+52016+…+52+4的值.
2.“杨辉三角”揭示了(a+b)n(n为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:
根据上述规律,完成下列各题:
(1)将(a+b)5展开后,各项的系数和为 .
(2)将(a+b)n展开后,各项的系数和为 .
(3)(a+b)6= .
下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:
(4)若(m,n)表示第m行,从左到右数第n个数,如(4,2)表示第四行第二个数是,则(6,2)表示的数是 ,(8,3)表示的数是 .
3.如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部分拼成的一个长方形.
(1)请你分别表示出这两个图形中阴影部分的面积: , ;
(2)请问以上结果可以验证哪个乘法公式? ;
(3)试利用这个公式计算:
①(2m+n﹣p)(2m﹣n+p)
②
③(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.
4.图(a)是一个长和宽为2m和2n的长方形,用图(a)中的虚线把该长方形平均分成四个小长方形,然后按图(b)的形式拼成一个正方形.
(1)图(b)中阴影部分正方形的边长是 (用含m、n的式子表示)
(2)请用两种不同的方法表示图(b)中阴影部分正方形的面积(用含m、n的式子表示)
方法① .
方法② .
(3)观察图(b),写出(m+n)2、(m﹣n)2与m•n三者之间的等量关系 .
(4)根据(3)中的等量关系,解决问题:若a+b=6,ab=4,求 (a﹣b)2.
5.如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b),连接AF、CF、AC.
(1)用含a、b的代数式表示GC= ;
(2)若两个正方形的面积之和为60,即a2+b2=60,又ab=20,图中线段GC的长;
(3)若a=8,△AFC的面积为S,则S= .
6.学习整式乘法时,老师拿出三种型号卡片,如图1.
(1)利用多项式与多项式相乘的法则,计算:(a+2b)(a+b)= ;
(2)选取1张A型卡片,4张C型卡片,则应取 张B型卡片才能用它们拼成一个新的正方形,此新的正方形的边长是 (用含a,b的代数式表示);
(3)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可检验的等量关系为 ;
(4)选取1张D型卡片,3张C型卡片按图3的方式不重复的叠放长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,且MN≠0.图中两阴影部分(长方形)的面积分别表示为S1,S2,若S1﹣S2=3b2,则a与b有什么关系?请说明理由.
7.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:
(1)写出图2中所表示的数学等式 .
(2)根据整式乘法的运算法则,通过计算验证上述等式.
(3)利用(1)中得到的结论,解决下面的问题:
若a+b+c=10,ab+ac+bc=35,则a2+b2+c2= .
小明同学用图3中x张边长为a的正方形,y张边长为b的正方形z张边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)长方形,则x+y+z= .
8.如图,将一张矩形大铁皮切割成九块,切痕如图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.
(1)用含m、n的代数式表示切痕的总长为 cm;
(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.
9.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).
(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;
(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.
10.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=30°,∠EDG=45°,则∠AED= °;
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论:
(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°求∠EKD的度数.
11.已知:直线a∥b,点A和点B是直线a上的点,点C和点D是直线b上的点,连接AD,BC,设直线AD和BC交于点E.
(1)在如图1所示的情形下,若AD⊥BC,求∠ABE+∠CDE的度数(提示:可过点E作EG∥AB);
(2)在如图2所示的情形下,若BF平分∠ABC,DF平分∠ADC,且BF与DF交于点F,当∠ABC=64°,∠ADC=72°时,求∠BFD的度数.
(3)如图3,当点B在点A的右侧时,若BF平分∠ABC,DF平分∠ADC,且BF,DF交于点F,设∠ABC=α,∠ADC=β,用含有α,β的代数式表示∠BFD的补角.(直接写出结果即可)
12.如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC于F点.
(1)求证:∠DBF+∠DFB=90°;
(2)如图②,如果∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.
(3)如图③,如果H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,的值是否发生变化?如果变化,说明理由;如果不变,试求出其值.
13.已知,直线AB∥CD,点E、F分别在直线AB、CD上,点P是直线AB与CD外一点,连接PE、PF.
(1)如图1,若∠AEP=45°,∠DFP=105°,求∠EPF的度数;
(2)如图2,过点E作∠AEP的角平分线EM交FP的延长线于点M,∠DFP的角平分线FN交EM的反向延长线交于点N,若∠M与3∠N互补,试探索直线EP与直线FN的位置关系,并说明理由;
(3)若点P在直线AB的上方且不在直线EF上,作∠DFP的角平分线FN交∠AEP的角平分线EM所在直线于点N,请直接写出∠EPF与∠ENF的数量关系.
14.如图1,AB∥CD,E为AB上一点,点P在线段CE上,且PD∥CF.
(1)求证:∠AEC+∠DCF=∠DPE;
(2)如图2,在线段CF上取点H,使∠HPF=∠HFP,若CD平分∠ECF,PQ平分∠EPH,∠HPQ+∠AEC=90°,试判断PF与EF的大小关系.
15.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC= .
问题迁移:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.
(1)当点P在A、B两点之间运动时,∠CPD、∠α、∠β之间有何数量关系?请说明理由.
(2)如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系.
16.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.
(1)若∠DCE=45°,则∠ACB的度数为 ;
(2)若∠ACB=140°,求∠DCE的度数;
(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由;
(4)当∠ACE<90°且点E在直线AC的上方时,这两块三角尺是否存在AD与BC平行的情况?若存在,请直接写出∠ACE的值;若不存在,请说明理由.
17.已知:直线a∥b,点A和点B是直线a上的点,点C和点D是直线b上的点,连接AD,BC,设直线AD和BC交于点E.
(1)在如图1所示的情形下,若AD⊥BC,求∠ABE+∠CDE的度数;
(2)在如图2所示的情形下,若BF平分∠ABC,DF平分∠ADC,且BF与DF交于点F,当∠ABC=64°,∠ADC=72°时,求∠BFD的度数;
(3)如图3,当点B在点A的右侧时,若BF平分∠ABC,DF平分∠ADC,且BF,DF交于点F,设∠ABC=α,∠ADC=β,用含有α,β的代数式表示∠BFD的补角.
18.已知,AB∥CD,CF平分∠ECD.
(1)如图1,若∠DCF=25°,∠E=20°,求∠ABE的度数.
(2)如图2,若∠EBF=2∠ABF,∠CFB的2倍与∠CEB的补角的和为190°,求∠ABE的度数.
(3)如图3,在(2)的条件下,P为射线BE上一点,H为CD上一点,PK平分∠BPH,HN∥PK,HM平分∠DHP,∠DHQ=2∠DHN,求∠PHQ的度数.
19.如图1,已知直线CD∥EF,点A、B分别在直线CD与EF上.P为两平行线间一点.
(1)求证∠APB=∠DAP+∠FBP;
(2)利用(1)的结论解答:
①如图2,AP1、BP1分别平分∠DAP、∠FBP,请你直接写出∠P与∠P1的数量关系.
②如图3,AP2、BP2分别平分∠CAP、∠EBP,若∠APB=80°,求∠AP2B的度数.
20.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D、A、B两点分别在l1和l2上,直线l3上有一动点P
(1)如果P点在C、D之间运动时,猜测∠PAC,∠APB,∠PBD之间有什么关系,证明你的结论
(2)若点P在DC的延长线上运动时,∠PAC,∠APB,∠PBD之间的关系为
(3)在(2)的条件下,∠PAC和∠PBD的角平分线相交于点Q,探索∠APB和∠AQB的关系,并证明.
21.一水果个体户在批发市场按每千克1.8元批发了若干千克的西瓜在城镇出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)水果个体户自带的零钱是多少?
(2)降价前他每千克西瓜出售的价格是多少?
(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?
(4)请问这位水果个体户一共赚了多少钱?
22.已知动点P以每秒2cm的速度沿如图甲所示的边框按从B﹣C﹣D﹣E﹣F﹣A的路径移动,相应的△ABP的面积S与关于时间t的图象如图乙所示,若AB=6cm,求:
(1)BC长为多少cm?
(2)图乙中a为多少cm2?
(3)图甲的面积为多少cm2?
(4)图乙中b为多少s?
23.甲、乙两人从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离s(单位:km)和行驶时间t(单位:h)之间的关系的图象如图所示,且甲停止一段时间后再次行走的速度是原来的一半,回答下列问题:
(1)求乙的速度?
(2)甲中途停止了多长时间?
(3)两人相遇时,离B地的路程是多少千米?
24.如图,已知△ABC中,AC=CB=20cm,AB=16cm,点D为AC的中点.
(1)如果点P在线段AB以6cm/s的速度由A点向B点运动,同时,点Q在线段BC上由点B向C点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△APD与△BQP是否全等?说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△APD与△BQP全等?
(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
25.八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
【探究与发现】
(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形
【理解与应用】
(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是 .
(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.
26.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有两个角度数的比是3:2,请直接写出∠ABO的度数 .
27.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
28.如图,在△ABC中,已知∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,CD与BM相交于点E,且点E是CD的中点,连接MD,过点D作DN⊥MD,交BM于点N.
(1)求证:△DBN≌△DCM;
(2)请探究线段NE、ME、CM之间的数量关系,并证明你的结论.
29.如图,已知凸五边形ABCDE中,EC,EB为其对角线,EA=ED.
(1)如图1,若∠A=60°,∠CDE=120°,且CD+AB=BC.求证:CE平分∠BCD;
(2)如图2,∠A与∠D互补,∠DEA=2∠CEB,若凸五边形ABCDE面积为30,且CD=AB=4.求点E到BC的距离.
30.如图1,线段AB、CD相交于点O,连接AD、CB.
(1)请说明:∠A+∠D=∠B+∠C;
(2)∠DAB的平分线AP和∠BCD的平分线CP相交于点P(如图2),试探索∠P与∠D、∠B之间的数量关系,并请说明理由;
(3)点M在OD上,点N在OB上,AM与CN相交于点P,且∠DAP=∠DAB.∠DCP=∠DCB,其中n为大于1的自然数(如图3).∠P与∠D、∠B之间又存在着怎样的数量关系?请直接写出你的探索结果,不必说明理由.
31.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,
(1)求C点的坐标;
(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;
(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.
32.如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°﹣∠BDO.
(1)求证:AC=BC;
(2)在(1)中点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,如图2,求BC+EC的长;
(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当点H在FC上移动、点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.
33.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).
(1)如图1,已知AE、BE分别是∠BAO和∠ABO的角平分线,
①当∠ABO=60°时,求∠AEB的度数;
②点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB的大小;
(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,请直接写出∠ABO的度数.
34.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.
(2)如图(2)若∠AOC=150°,求∠BOD的度数.
(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.
(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.
35.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:AE+CF=EF.
(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,给出证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并给予证明.
小明第(1)问的证明步骤是这样的:
延长DC到Q使CQ=AE,连接BQ,
证出△BAE≌△BCQ得到BE=BQ,∠ABE=∠CBQ;
再证△BEF≌△BQF,得到EF=FQ,证出EF=CF+CQ,即EF=CF+AE.
请你仿照小明的证题步骤完成第(2)问的证明.
36.如图,△ABC的边BC的垂直平分线DM与∠BAC的平分线AD相交于D,DE⊥AB于点E,DF⊥AC于F,连接BD、CD.
求证:(1)△BDE≌△CDF;
(2)AB+AC=2AE.
37.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数: 个;
(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)
【期中讲练测】北师大版八年级下册数学压轴真题必刷06 解答题.zip: 这是一份【期中讲练测】北师大版八年级下册数学压轴真题必刷06 解答题.zip,文件包含期中讲练测北师大版八年级下册数学压轴真题必刷06压轴题原卷版docx、期中讲练测北师大版八年级下册数学压轴真题必刷06压轴题解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。
【期中讲练测】北师大版七年级下册数学 期中选择填空.zip: 这是一份【期中讲练测】北师大版七年级下册数学 期中选择填空.zip,文件包含期中讲练测北师大版七年级下册数学期中选择填空必刷原卷版docx、期中讲练测北师大版七年级下册数学期中选择填空必刷解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
【期中讲练测】北师大版七年级下册数学 期中综合.zip: 这是一份【期中讲练测】北师大版七年级下册数学 期中综合.zip,文件包含期中讲练测北师大版七年级下册数学期中必刷综合原卷版docx、期中讲练测北师大版七年级下册数学期中必刷综合解析版docx等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。