题型七 函数的基本性质 类型三二次函数45题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用)
展开A.对称轴为B.顶点坐标为C.函数的最大值是-3D.函数的最小值是-3
2.将抛物线向下平移两个单位,以下说法错误的是( )
A.开口方向不变B.对称轴不变 C.y随x的变化情况不变D.与y轴的交点不变
3.(2023·广西·统考中考真题)将抛物线向右平移3个单位,再向上平移4个单位,得到的抛物线是( )
A.B.
C.D.
4.抛物线上部分点的横坐标x,纵坐标y的对应值如表:
下列结论不正确的是( )
A.抛物线的开口向下B.抛物线的对称轴为直线
C.抛物线与x轴的一个交点坐标为D.函数的最大值为
5.(2023·辽宁大连·统考中考真题)已知抛物线,则当时,函数的最大值为( )
A.B.C.0D.2
6.已知抛物线,下列结论错误的是( )
A.抛物线开口向上 B.抛物线的对称轴为直线
C.抛物线的顶点坐标为D.当时,y随x的增大而增大
7.(2023·四川成都·统考中考真题)如图,二次函数的图象与x轴交于,两点,下列说法正确的是( )
A.抛物线的对称轴为直线B.抛物线的顶点坐标为
C.,两点之间的距离为D.当时,的值随值的增大而增大
8.已知抛物线(是常数,)经过点,当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③.其中,正确结论的个数是( )
A.0B.1C.2D.3
9.(2023·河南·统考中考真题)二次函数的图象如图所示,则一次函数的图象一定不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
10.如图,二次函数的图象的对称轴是直线,则以下四个结论中:①,②,③,④.正确的个数是( )
A.1B.2C.3D.4
11.(2023·内蒙古通辽·统考中考真题)如图,抛物线与x轴交于点,其中,下列四个结论:①;②;③;④不等式的解集为.其中正确结论的个数是( )
A.1B.2C.3D.4
12.已知二次函数y=x2−2x−3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当−1
A.B.C.D.
13.(2023·四川自贡·统考中考真题)经过两点的抛物线(为自变量)与轴有交点,则线段长为( )
A.10B.12C.13D.15
14.如图,已知抛物线(,,为常数,)经过点,且对称轴为直线,有下列结论:①;②;③;④无论,,取何值,抛物线一定经过;⑤.其中正确结论有( )
A.1个B.2个C.3个D.4个
15.(2023·四川达州·统考中考真题)如图,拋物线(为常数)关于直线对称.下列五个结论:①;②;③;④;⑤.其中正确的有( )
A.4个B.3个C.2个D.1个
16.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于( )
A.B.4C.﹣D.﹣
17.(2023·四川凉山·统考中考真题)已知抛物线的部分图象如图所示,则下列结论中正确的是( )
A.B.C.D.(为实数)
18.如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是( )
A.B.当时,的值随值的增大而增大
C.点的坐标为D.
19.(2023·四川南充·统考中考真题)抛物线与x轴的一个交点为,若,则实数的取值范围是( )
A.B.或
C.D.或
20.抛物线经平移后,不可能得到的抛物线是( )
A. B. C. D.
21.(2023·四川广安·统考中考真题)如图所示,二次函数为常数,的图象与轴交于点.有下列结论:①;②若点和均在抛物线上,则;③;④.其中正确的有( )
A.1个B.2个C.3个D.4个
22.已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是( )
A.1B.2C.3D.4
23.(2023·四川遂宁·统考中考真题)抛物线的图象如图所示,对称轴为直线.下列说法:①;②;③(t为全体实数);④若图象上存在点和点,当时,满足,则m的取值范围为.其中正确的个数有( )
A.1个B.2个C.3个D.4个
24.如图,已知抛物线的图象与轴交于两点,其对称轴与轴交于点其中两点的横坐标分别为和下列说法错误的是( )
A.B.
C.D.当时,随的增大而减小
25.(2023·浙江宁波·统考中考真题)已知二次函数,下列说法正确的是( )
A.点在该函数的图象上
B.当且时,
C.该函数的图象与x轴一定有交点
D.当时,该函数图象的对称轴一定在直线的左侧
26.如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是( )
A.B.C.D.
27.(2023·山东东营·统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,对称轴为直线,若点A的坐标为,则下列结论正确的是( )
A.
B.
C.是关于x的一元二次方程的一个根
D.点,在抛物线上,当时
28.一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
29.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线与x轴交于点,对称轴为直线.则下列结论正确的有( )
①;
②;
③方程的两个根为;
④抛物线上有两点和,若且,则.
A.1个B.2个C.3个D.4个
30.对于一个函数,自变量取时,函数值等于0,则称为这个函数的零点.若关于的二次函数有两个不相等的零点,关于的方程有两个不相等的非零实数根,则下列关系式一定正确的是( )
A.B.C.D.
31.(2023·湖南·统考中考真题)已知是抛物线(a是常数,上的点,现有以下四个结论:①该抛物线的对称轴是直线;②点在抛物线上;③若,则;④若,则其中,正确结论的个数为( )
A.1个B.2个C.3个D.4个
32.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数图像的一部分与x轴的一个交点坐标为,对称轴为直线,结合图像给出下列结论:
①;②;③;
④关于x的一元二次方程有两个不相等的实数根;
⑤若点,均在该二次函数图像上,则.其中正确结论的个数是( )
A.4B.3C.2D.1
33.(2023·内蒙古·统考中考真题)已知二次函数,若点在该函数的图象上,且,则的值为________.
34.抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是______.
35.(2023·湖南郴州·统考中考真题)抛物线与轴只有一个交点,则________.
36.在平面直角坐标系中,若抛物线与x轴只有一个交点,则_______.
37.(2023·福建·统考中考真题)已知抛物线经过两点,若分别位于抛物线对称轴的两侧,且,则的取值范围是___________.
38.(2023·湖北武汉·统考中考真题)抛物线(是常数,)经过三点,且.下列四个结论:
①;
②;
③当时,若点在该抛物线上,则;
④若关于的一元二次方程有两个相等的实数根,则.
其中正确的是________(填写序号).
39.已知抛物线(,,是常数),,下列四个结论:
①若抛物线经过点,则;
②若,则方程一定有根;
③抛物线与轴一定有两个不同的公共点;
④点,在抛物线上,若,则当时,.
其中正确的是__________(填写序号).
40.(2023·浙江宁波·统考中考真题)如图,已知二次函数图象经过点和.
(1)求该二次函数的表达式及图象的顶点坐标.
(2)当时,请根据图象直接写出x的取值范围.
41.已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
42.设二次函数(b,c是常数)的图像与x轴交于A,B两点.
(1)若A,B两点的坐标分别为(1,0),(2,0),求函数的表达式及其图像的对称轴.
(2)若函数的表达式可以写成(h是常数)的形式,求的最小值.
(3)设一次函数(m是常数).若函数的表达式还可以写成的形式,当函数的图像经过点时,求的值.
43.(2023·黑龙江·统考中考真题)如图,抛物线与轴交于两点,交轴于点.
(1)求抛物线的解析式.
(2)拋物线上是否存在一点,使得,若存在,请直接写出点的坐标;若不存在,请说明理由.
44.在平面直角坐标系xy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
45.已知抛物线:()经过点.
(1)求抛物的函数表达式.
(2)将抛物线向上平移m()个单位得到抛物线.若抛物线的顶点关于坐标原点O的对称点在抛物线上,求m的值.
(3)把抛物线向右平移n()个单位得到抛物线.已知点,都在抛物线上,若当时,都有,求n的取值范围.
x
-2
-1
0
6
y
0
4
6
1
题型七 函数的基本性质 类型一 一次函数31题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用): 这是一份题型七 函数的基本性质 类型一 一次函数31题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型七函数的基本性质类型一一次函数31题专题训练原卷版docx、题型七函数的基本性质类型一一次函数31题专题训练解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用): 这是一份题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练原卷版docx、题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
题型三 方程应用 类型二分式方程35题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用): 这是一份题型三 方程应用 类型二分式方程35题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型三方程应用类型二分式方程35题专题训练原卷版docx、题型三方程应用类型二分式方程35题专题训练解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。