资料中包含下列文件,点击文件名可预览资料内容
还剩3页未读,
继续阅读
2024年广东省江门市江海区景贤初级中学中考一模数学试题(原卷版+解析版)
展开这是一份2024年广东省江门市江海区景贤初级中学中考一模数学试题(原卷版+解析版),文件包含2024年广东省江门市江海区景贤初级中学中考一模数学试题原卷版docx、2024年广东省江门市江海区景贤初级中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
(本卷共4页,满分120分,考试时间120分钟)
注意事项:
1.答题前,考生务必将自己的姓名,准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.
2.选择题的答案选出后,必须使用2B铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号.非选择题答案必须使用0.5mm黑色墨水签字笔填写在答题卡对应的区域内,写在本试卷上无效.
3.考试结束后,请将本试卷和答题卡一并交回.
一、选择题(本大题共10个小题,每小题3分.满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)
1. 的绝对值是( )
A. B. C. D.
【答案】D
【解析】
【分析】本题考查了绝对值.根据绝对值性质可得答案.正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.
【详解】解:的绝对值是.
故选:D.
2. 2023年全国高考报名人数约12910000人,数12910000用科学记数法表示为( )
A. B. C. D.
【答案】C
【解析】
【分析】此题考查科学记数法的表示方法.用科学记数法表示绝对值较大的数时,一般形式为,其中,n为整数,且n比原来的整数位数少1,据此解答即可.
【详解】解:将数12910000用科学记数法表示为.
故选:C.
3. 如图是一个立体图形的三视图,该立体图形是( )
A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥
【答案】D
【解析】
【分析】根据主视图和左视图确定是柱体、锥体、球体,再由俯视图确定具体形状.
【详解】解:由主视图和左视图为三角形判断出是锥体,
根据俯视图是圆可判断出这个几何体应该是圆锥.
故选:D.
【点睛】本题考查了由物体的三种视图确定几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.
4. 不等式组的解集是( )
A. B. C. D.
【答案】A
【解析】
【分析】先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.
【详解】解:
解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
故选A.
【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.
5. 某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是( )
A. 5,4B. 5,6C. 6,5D. 6,6
【答案】B
【解析】
【分析】根据中位数和众数的定义即可求出答案.
【详解】解:这组数据3,6,4,6,4,3,6,5,7中出现次数最多的是6,
众数是6.
将这组数据3,6,4,6,4,3,6,5,7按从小到大顺序排列是3,3,4,4,5,6, 6, 6, 7,
中位数为:5.
故选:B.
【点睛】本题考查了中位数和众数,解题的关键在于熟练掌握中位数和众数的概念,中位数是指将一组数据按大小顺序排列,若一组数据为奇数个,处在最中间位置的一个数叫做这组数据的中位数;若一组数据是偶数,则处在最中间的两个数的平均数为这组数据的中位数;众数指的是在一组数据中出现次数最多的数叫做这组数据的众数.
6. 在反比例函数的图象上有两点,当时,有,则的取值范围是( )
A. B. C. D.
【答案】C
【解析】
【分析】根据题意可得反比例函数的图象在一三象限,进而可得,解不等式即可求解.
【详解】解:∵当时,有,
∴反比例函数的图象在一三象限,
∴
解得:,
故选:C.
【点睛】本题考查了反比例函数图象的性质,根据题意得出反比例函数的图象在一三象限是解题的关键.
7. 如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )
A. 40°B. 50°C. 70°D. 80°
【答案】D
【解析】
【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.
【详解】∵∠ABC=20°,
∴∠AOC=40°,
∵AB是⊙O的弦,OC⊥AB,
∴∠AOC=∠BOC=40°,
∴∠AOB=80°,
故选D.
【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.
8. 如图所示,长方形纸片中,,,现将其沿对折,使得点与点重合,则长为( )
A. B. C. D.
【答案】D
【解析】
【分析】设,则,利用长方形纸片中,现将其沿对折,使得点C与点A重合,由勾股定理求即可.
【详解】解:∵长方形纸片中,,,现将其沿对折,使得点C与点A重合,
∴,,,
设,则,
在中,∵,
∴,
解得:.
即的长为.
故选:D.
【点睛】本题考查了图形的翻折变换,勾股定理的应用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变是解题关键.
9. 拋物线与轴相交于点.下列结论:
①;②;③;④若点在抛物线上,且,则.其中正确的结论有( )
A. 1个B. 2个C. 3个D. 4个
【答案】B
【解析】
【分析】二次函数整理得,推出,可判断①错误;根据二次函数的的图象与x轴的交点个数可判断②正确;由,代入可判断③正确;根据二次函数的性质及数形结合思想可判断④错误.
【详解】解:①由题意得:,
∴,
∵,
∴,
∴,故①错误;
②∵抛物线与x轴相交于点.
∴有两个不相等的实数根,
∴,故②正确;
③∵,
∴,故③正确;
④∵抛物线与x轴相交于点.
∴抛物线的对称轴为:,
当点在抛物线上,且,
∴或,
解得:,故④错误,
综上,②③正确,共2个,
故选:B.
【点睛】本题考查了二次函数与系数的关系,掌握二次函数的性质及数形结合思想是解题的关键.
10. 如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为(细实线)表示铁桶中水面高度,(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则随时间变化的函数图象大致为( )
A. B. C. D.
【答案】C
【解析】
【分析】根据特殊点的实际意义即可求出答案.
【详解】解:根据图象知,时,铁桶注满了水,,是一条斜线段,,是一条水平线段,
当时,长方体水池开始注入水;当时,长方体水池中的水没过铁桶,水池中水面高度比之开始变得平缓;当时,长方体水池满了水,
∴开始是一段陡线段,后变缓,最后是一条水平线段,
观察函数图象,选项C符合题意,
故选:C.
【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
二、填空题(本大题共6个小题,每小题3分,满分18分,请将答案直接填在答线卡对应的横线上)
11. 写出一个小于4的正无理数是________.
【答案】(答案不唯一)
【解析】
【分析】根据无理数估算的方法求解即可.
【详解】解:∵,
∴.
故答案为:(答案不唯一).
【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.
12. 因式分解:______.
【答案】
【解析】
【分析】原式提取3a后,再运用平方差公式进行因式分解即可.
【详解】.
故答案为:.
【点睛】本题主要考查了综合运用提公因式法和公式法的综合运用,熟练运用公式是解题的关键.
13. 在平面直角坐标系中,若反比例函数的图象经过点和点,则m的值为_______.
【答案】
【解析】
【分析】本题考查了反比例函数的性质.由反比例函数的图象及其性质将A、B点代入反比例函数即可求得m的值.
【详解】解:∵反比例函数的图象经过点和点,
∴.
解得:.
故答案为:.
14. 计算:________.
【答案】7
【解析】
【分析】本题主要考查了实数的混合运算.先计算绝对值,负整数指数幂,化简二次根式和特殊角三角函数值,再根据实数的混合运算法则求解即可.
【详解】解:
,
故答案为:7.
15. 有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.
【答案】
【解析】
【分析】用树状图表示所有情况的结果,然后找出抽取的两张卡片上的图形都是中心对称图形的情况,最后根据概率公式计算即可.
【详解】解:分别用,,,表示等腰三角形,平行四边形,正五边形,圆,画树状图如下:
依题意和由图可知,共有12种等可能的结果数,其中两次抽出的图形都是中心对称图形的占2种,
两次抽出的图形都是中心对称图形的概率为:.
故答案为.
【点睛】本题考查了树状图法,中心对称图形,解题的关键在于熟练掌握概率公式以及正确理解题意(拿出卡片不放回).
16. 如图,在中,的内切圆与分别相切于点,,连接的延长线交于点,则_________.
【答案】##度
【解析】
【分析】如图所示,连接,设交于H,由内切圆的定义结合三角形内角和定理求出,再由切线长定理得到,进而推出是的垂直平分线,即,则.
【详解】解:如图所示,连接,设交于H,
∵是的内切圆,
∴分别是的角平分线,
∴,
∵,
∴,
∴,
∴,
∵与分别相切于点,,
∴,
又∵,
∴是的垂直平分线,
∴,即,
∴,
故答案为:.
【点睛】本题主要考查了三角形内切圆,切线长定理,三角形内角和定理,线段垂直平分线的判定,三角形外角的性质,正确作出辅助线是解题的关键.
三、解答题(本大题共9个题,满分72分)
17. 解分式方程:
【答案】
【解析】
【分析】方程两边先乘以(2x-2),再去括号,移项,系数化为1,对根进行检验,即可.
【详解】
,
经检验,是原方程的根,
则方程解为:.
【点睛】本题主要考查了解分式方程的知识.解分式方程时,需要对所求的根进行检验.
18. 如图,点E、F在线段BC上,,,,证明:.
【答案】见解析
【解析】
【分析】利用AAS证明△ABE≌△DCF,即可得到结论.
【详解】证明:∵,
∴∠B=∠C,
∵,,
∴△ABE≌△DCF(AAS),
∴.
【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.
19. 为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A(很强),B(强),C(一般),D(弱),E(很弱)分为五个等级.将收集的数据整理后,绘制成如下不完整的统计图表.
(1)本次调查的学生共_________人;
(2)已知,请将条形统计图补充完整;
(3)若将A,B,C三个等级定为“防诈骗意识”合格,请估计该校2000名学生中"防诈骗意识”合格的学生有多少人?
【答案】(1)共100人
(2)见解析 (3)估计该校2000名学生中“防诈骗意识”合格的学生有1300人
【解析】
【分析】(1)根据统计图可进行求解;
(2)由(1)及可求出a、b的值,然后问题可求解;
(3)根据统计图及题意可直接进行求解.
【小问1详解】
解:由统计图可知:(人);
故答案为100;
【小问2详解】
解:由(1)得:,
∵,
∴,
补全条形统计图如下:
【小问3详解】
解:由题意得:
(人).
∴估计该校2000名学生中“防诈骗意识”合格的学生有1300人.
【点睛】本题主要考查条形统计图及扇形统计图,解题的关键是理清统计图中的各个数据.
20. 为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝横断面为梯形,斜面坡度是指坡面的铅直高度与水平宽度的比.已知斜坡长度为20米,,求斜坡的长.(结果精确到米)(参考数据:)
【答案】斜坡的长约为10米
【解析】
【分析】过点作于点,在中,利用正弦函数求得,在中,利用勾股定理即可求解.
【详解】解:过点作于点,则四边形矩形,
在中,,
.
∴.
∵,
∴在中,(米).
答:斜坡的长约为10米.
【点睛】此题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.
21. 已知正六边形,请仅用无刻度的直尺完成下列作图(保留作图痕迹,不写作法,用虚线表示作图过程,实线表示作图结果).
(1)在图中作出以为对角线的一个菱形;
(2)已知六边形的边长为2,求(1)所作菱形的面积.
【答案】(1)见解析 (2)菱形的面积为.
【解析】
【分析】本题考查了作图—复杂作图,复杂作图是结合了几何图形的性质和基本作图的方法,涉及到的知识点有菱形的性质和判定,解直角三角形.
(1)根据菱形的性质对角线互相垂直平分即可作出图形;
(2)利用正多边形的性质以及解直角三角形求得,再根据菱形的面积公式求解即可.
【小问1详解】
解:如图,菱形即为所求(不唯一):
【小问2详解】
解:如图,连接,
∵正六边形中,
∴,
∴,
∴都是等边三角形,
∴,
∴,
∴,,
∴菱形的面积.
22. 已知关于x的一元二次方程.
(1)求证:无论m取何值时,方程都有两个不相等的实数根;
(2)设该方程的两个实数根为a,b,求的值.
【答案】(1)见解析 (2)1
【解析】
【分析】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.
(1)根据一元二次方程根的判别式可进行求解;
(2)根据一元二次方程根与系数的关系可进行求解.
【小问1详解】
证明:∵
,
∴无论取何值,方程都有两个不相等的实数根.
【小问2详解】
解:∵的两个实数根为a,b,
∴,
∴
.
23. 某农户生产经销一种农产品,已知这种产品的成本价为每千克20元.市场调查发现,该产品每天的销售价为25(元/千克)时,每天销售量为30(千克).当产品的销售价每千克涨1元时每天销售量会减少2千克,设涨价x(元/千克)(x为正整数),每天销售量为y(千克).
(1)直接写出y与x之间的函数关系式.
(2)该农户想要每天获得128元的销售利润,销售价为多少?
(3)每千克涨价多少元时,每天的销售利润最大?最大利润是多少元?
【答案】(1)(,且x为整数)
(2)农户想要每天获得128元的销售利润,销售价为36元
(3)每千克涨价5元时,每天销售利润最大,最大利润是200元
【解析】
【分析】本题主要考查了二次函数的实际应用,解题的关键在于能够准确读懂题意找到关系式进行求解.
(1)根据当产品的销售价每千克涨1元时每天销售量会减少2千克,进行求解即可;
(2)设利润为w元,则由(1)可得每天销售量为千克,每天的每千克的获利为,由此可得,再把代入进行求解即可;
(3)由(2)得,然后利用二次函数的性质进行求解即可.
【小问1详解】
解:则由题意得:,
∵,
∴,
∴y与x之间的函数关系式为(,且x为整数);
【小问2详解】
解:设利润为w元,
则由题意得:,
∵该农户想要每天获得128元的销售利润,
∴,
解得:(舍去),
∴销售价为(元),
∴农户想要每天获得128元的销售利润,销售价为36元;
【小问3详解】
解:,
∵,
∴当时,w有最大值,最大值为200,
∴每千克涨价5元时,每天的销售利润最大,最大利润是200元.
24. 如图,等腰内接于,,是边上的中线,过点C作的平行线交的延长线于点E,交于点F,连接,.
(1)求证:四边形是平行四边形.
(2)求证:为的切线;
(3)若的半径为5,,求的长.
【答案】(1)见解析 (2)见解析
(3).
【解析】
【分析】(1)证明,得出,则四边形是平行四边形;
(2)由平行四边形的性质知,作于.得出为的垂直平分线.则.又点在上,即可得证;
(3)过点作于,连接.垂径定理得出,勾股定理得,进而可得,勾股定理求得,证明,可得,根据相似三角形的性质得出,,然后求得,勾股定理求得,证明,根据相似三角形的性质即可求解.
【小问1详解】
证明:∵,
∴.
又,
∴.
∴.
∴四边形是平行四边形;
【小问2详解】
证明:∵四边形是平行四边形;
∴.
作于.
又∵,
∴为的垂直平分线.
∴点在上.
∴.
即.又点在上,
∴为的切线;
【小问3详解】
解:过点作于,连接.
∵为的垂直平分线,
∴.
∴.
∴.
∴.
∴.
∵,,
∴,
∴,
又,
∴.
∴,.
∴.
∴.
∵,
∴.
∴.
∴.
∴.
【点睛】本题考查了平行四边形的判定和性质,切线的判定,垂径定理,勾股定理,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
25. 如图1,在平面直角坐标系中,已知抛物线与轴交于点,与轴交于点,顶点为,连接.
(1)抛物线的解析式为__________________;(直接写出结果)
(2)在图1中,连接并延长交的延长线于点,求的度数;
(3)如图2,若动直线与抛物线交于两点(直线与不重合),连接,直线与交于点.当时,点的横坐标是否为定值,请说明理由.
【答案】(1)
(2)
(3),理由见解析
【解析】
【分析】(1)待定系数法求解析式即可求解;
(2)待定系数法求得直线直线的解析式为:,直线的解析式为:.联立两直线解析式,得出点的坐标为.方法1:由题意可得:.过点E作轴于点F.计算得出,又,可得,根据相似三角形的性质得出;方法2:如图2,延长与轴交于点,过点作于点,过点作轴于点.等面积法求得,解即可求解.方法3:如图2,过点作于点.根据,得出,进而得出;
(3)设点的坐标为,点的坐标为.由点,点,可得到直线的解析式为:.得出点的坐标可以表示为.由点,点,得直线的解析式为:.同理可得可得到直线的解析式为:.联立可得,则点的横坐标为定值3.
【小问1详解】
解:∵抛物线与轴交于点,
∴,
解得:,
∴抛物线解析式为;
【小问2详解】
∵点,点,
设直线的解析式为:.
∴,
∴,
直线的解析式为:.
同上,由点,可得直线的解析式为:.
令,得.
∴点的坐标为.
方法1:由题意可得:.
∴.
如图1,过点E作轴于点F.
∴.
∴.
∴.
又,
∴.
∴.
∵,
∴.
∵,
即.
方法2:如图2,延长与轴交于点,过点作于点,过点作轴于点.
∵,
∴.
∴.
∴.
∴.
∴.
∵,
,
∴.
∴
∴,即.
方法3:如图2,过点作于点.
∵.
∴.
∵,
∴.
∴.
【小问3详解】
设点的坐标为,点的坐标为.
∵直线与不重合,
∴且且.
如图3,由点,点,
可得到直线的解析式为:.
∵,
∴可设直线的解析式为:.
将代入,
得.
∴.
∴点的坐标可以表示为.
设直线的解析式为:,
由点,点,得
,
解得.
∴直线的解析式为:.
同上,由点,点,
可得到直线的解析式为:.
∴.
∴.
∴.
∴点的横坐标为定值3.
【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,一次函数的平移,熟练掌握二次函数的性质是解题的关键.等级
人数
A(很强)
a
B(强)
b
C(一般)
20
D(弱)
19
E(很弱)
16
相关试卷
广东省江门市第一中学景贤学校2023-2024学年七年级下学期月考数学试题(原卷版+解析版):
这是一份广东省江门市第一中学景贤学校2023-2024学年七年级下学期月考数学试题(原卷版+解析版),文件包含广东省江门市第一中学景贤学校2023-2024学年七年级下学期月考数学试题原卷版docx、广东省江门市第一中学景贤学校2023-2024学年七年级下学期月考数学试题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
广东省江门市江海区景贤初级中学2023-2024学年九年级下学期第一次模拟考试数学试题:
这是一份广东省江门市江海区景贤初级中学2023-2024学年九年级下学期第一次模拟考试数学试题,共2页。
2024年广东省江门市新会华侨中学中考一模数学试题(原卷版+解析版):
这是一份2024年广东省江门市新会华侨中学中考一模数学试题(原卷版+解析版),文件包含2024年广东省江门市新会华侨中学中考一模数学试题原卷版docx、2024年广东省江门市新会华侨中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。