押题预测卷08-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型)
展开2、锻炼同学的考试心理,训练学生快速进入考试状态。高考的最佳心理状态是紧张中有乐观,压力下有自信,平静中有兴奋。
3、训练同学掌握一定的应试技巧,积累考试经验。模拟考试可以训练答题时间和速度。高考不仅是知识和水平的竞争,也是时间和速度的竞争,可以说每分每秒都是成绩。
4、帮助同学正确评估自己。高考是一种选拨性考试,目的是排序和择优,起决定作用的是自己在整体中的相对位置。因此,模拟考试以后,同学们要想法了解自己的成绩在整体中的位置。
决胜2024年高考数学押题预测卷08
数 学
(新高考九省联考题型)
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,则( )
A. B. C. D.
2.在正方体中,下列关系正确的是( )
A. B. C. D.
3.已知复数且有实数根b,则=( )
A. B. 12C. D. 20
4.已知圆与圆外切,直线与圆C相交于A,B两点,则( )
A.4 B.2 C. D.
5.已知是等差数列的前n项和,是数列的前n项和,若,则( )
A. B. C. D.
6.在三棱锥中,底面是边长为2的正三角形,若为三棱锥的外接球直径,且与所成角的余弦值为,则该外接球的表面积为( )
A. B. C. D.
7.已知函数定义域为,且为奇函数,为偶函数,,则=( )
A. 4036 B. 4040C. 4044D. 4048
8.已知函数,设曲线在点处切线的斜率为,若均不相等,且,则的最小值为( )
A. 12B. 6C. 9D. 18
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.下列结论中,正确的是( )
A. 数据4,1,6,2,9,5,8的第60百分位数为5
B. 若随机变量,则
C. 已知经验回归方程为,且,则
D. 根据分类变量与成对样本数据,计算得到,依据小概率值的独立性检验,可判断与有关联,此推断犯错误的概率不大于0.001
10.甲箱中有个红球和个白球,乙箱中有个红球和个白球(两箱中的球除颜色外没有其他区别),先从甲箱中随机取出一球放入乙箱,分别用事件和表示从甲箱中取出的球是红球和白球;再从乙箱中随机取出两球,用事件表示从乙箱中取出的两球都是红球,则( )
A. B.
C. D.
11.我国著名数学家华罗庚先生说:“就数学本身而言,是壮丽多彩、千姿百态、引人入胜的……认为数学枯燥乏味的人,只是看到了数学的严谨性,而没有体会出数学的内在美.”图形美是数学美的重要方面.如图,由抛物线分别逆时针旋转可围成“四角花瓣”图案(阴影区域),则( )
A. 开口向下的抛物线的方程为
B. 若,则
C. 设,则时,直线截第一象限花瓣的弦长最大
D. 无论为何值,过点且与第二象限花瓣相切的两条直线的夹角为定值
三、填空题:本题共3小题,每小题5分,共15分.
12.设的展开式的二项式系数和为64,则展开式中常数项为_________.
13.在中,,,M为BC的中点,,则________.
14.在中,,则______;若点为所在平面内的动点,且满足,则的取值范围是______.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.如图,在三棱柱中,,,且平面平面
证明:平面平面;
设点P为直线BC的中点,求直线与平面所成角的正弦值.
16.设函数.已知的图象的两条相邻对称轴间的距离为,且.
(1)若在区间上有最大值无最小值,求实数m的取值范围;
(2)设l为曲线在处的切线,证明:l与曲线有唯一的公共点.
17.某工厂生产某种元件,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品,现抽取这种元件100件进行检测,检测结果统计如下表:
(1)现从这100件样品中随机抽取2件,若其中一件为合格品,求另一件也为合格品的概率;
(2)关于随机变量,俄国数学家切比雪夫提出切比雪夫不等式:
若随机变量X具有数学期望,方差,则对任意正数,均有成立.
(i)若,证明:;
(ii)利用该结论表示即使分布未知,随机变量的取值范围落在期望左右的一定范围内的概率是有界的.若该工厂声称本厂元件合格率为90%,那么根据所给样本数据,请结合“切比雪夫不等式”说明该工厂所提供的合格率是否可信?(注:当随机事件A发生的概率小于0.05时,可称事件A为小概率事件)
18.已知数列的前n项和为,,.
(1)证明:数列为等比数列;
(2)设,求数列的前n项和;
(3)是否存在正整数p,q(),使得,,成等差数列?若存在,求p,q;若不存在,说明理由.
19.已知动点与定点的距离和到定直线的距离的比为常数.其中,且,记点的轨迹为曲线.
(1)求的方程,并说明轨迹的形状;
(2)设点,若曲线上两动点均在轴上方,,且与相交于点.
①当时,求证:的值及的周长均为定值;
②当时,记的面积为,其内切圆半径为,试探究是否存在常数,使得恒成立?若存在,求(用表示);若不存在,请说明理由.
测试指标
元件数(件)
12
18
36
30
4
押题预测卷07-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型): 这是一份押题预测卷07-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型),文件包含押题预测卷07-决胜2024年高考数学押题预测模拟卷新高考九省联考题型原卷版docx、押题预测卷07-决胜2024年高考数学押题预测模拟卷新高考九省联考题型解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
押题预测卷06-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型): 这是一份押题预测卷06-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型),文件包含押题预测卷06-决胜2024年高考数学押题预测模拟卷新高考九省联考题型原卷版docx、押题预测卷06-决胜2024年高考数学押题预测模拟卷新高考九省联考题型解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
押题预测卷05-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型): 这是一份押题预测卷05-决胜2024年高考数学押题预测模拟卷(新高考九省联考题型),文件包含押题预测卷05新高考九省联考题型原卷版docx、押题预测卷05新高考九省联考题型解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。