年终活动
搜索
    上传资料 赚现金

    +上海市杨浦区2023-2024学年七年级下学期期中考试数学试卷+

    +上海市杨浦区2023-2024学年七年级下学期期中考试数学试卷+第1页
    +上海市杨浦区2023-2024学年七年级下学期期中考试数学试卷+第2页
    +上海市杨浦区2023-2024学年七年级下学期期中考试数学试卷+第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    +上海市杨浦区2023-2024学年七年级下学期期中考试数学试卷+

    展开

    这是一份+上海市杨浦区2023-2024学年七年级下学期期中考试数学试卷+,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.下列运算正确的是( )
    A. B. C. D.
    2.下列说法正确的是( )
    A. 无理数与无理数的和为无理数B. 一个数算术平方根不比这个数大
    C. 实数可分为有理数和无理数D. 数轴上的点和有理数一一对应
    3.下列说法正确的是( )
    A. 三角形的一个外角大于任何一个内角
    B. 有公共顶点的两个角是邻补角
    C. 如果两条直线被第三条直线所截,那么内错角相等
    D. 联结直线外一点与直线上各点的所有线段中,垂线段最短
    4.如图,梯形ABCD中,,若,,则为( )
    A.
    B.
    C. 2
    D.
    二、填空题:本题共15小题,共34分。
    5.2的平方根是______.
    6.把表示成幂的形式是______.
    7.计算:______.
    8.据统计,截止2018年底,上海市常住人口数量约为24180000人,将24180000这个数保留三个有效数字并用科学记数法表示是______.
    9.用计算器比较大小:______在横线上填写“>”、“
    【解析】解:,,

    故答案为:
    求出和的近似值,根据两负数比较法则比较即可.
    本题考查了对有理数的大小比较的应用,负数的比较法则:先求出每个负数的绝对值,其绝对值大的反而小.题型较好.
    10.【答案】
    【解析】解:,

    的整数部分为1,
    的整数部分是3,


    故答案为:
    先估算出和的整数部分,即可求出a,再计算即可.
    本题考查的是估算无理数的大小,熟练计算出的小数部分是解题的关键.
    11.【答案】
    【解析】解:点A所对应的数是1,在数轴上点C所对应的数是,在数轴上点B所对应的数是x,
    又点C和点B关于点A成中心对称,

    解得:,
    故答案为:
    根据题意可列:,求解即可.
    本题考查的是实数与数轴,熟练掌握两点间的距离公式是解题的关键.
    12.【答案】
    【解析】解:,
    的邻补角,
    直线AB、CD的夹角为,
    故答案为:
    先求出的邻补角,即可解答.
    本题考查了对顶角、邻补角,准确熟练地进行计算是解题的关键.
    13.【答案】75
    【解析】解:,

    比大,



    故答案为:
    由,可以推出,再根据比大列出方程即可求出的度数.
    本题主要考查了平行线的性质,熟记两直线平行,同旁内角互补是解决问题的关键.
    14.【答案】
    【解析】解:直线AB与CD相交于一点O,,

    平分,


    故答案为:
    根据对顶角的性质得,再根据角平分线的定义得,然后再根据邻补角的定义可得的度数.
    此题主要考查了角平分线的定义,对顶角的性质,邻补角的定义,准确识图,理解角平分线的定义,对顶角的性质,邻补角的定义,熟练掌握角的计算是解决问题的关键.
    15.【答案】5或6或7
    【解析】解:依题意有,即,
    所以符合条件的整数x的取值为:5或6或
    故答案为:5或6或
    先根据三角形的三边关系求出x的取值范围,再求出符合条件的x的值即可.
    本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.
    16.【答案】
    【解析】解:是的外角
    是的平分线
    是的平分线
    是的外角
    故答案为:
    由三角形外角性质得,;角平分线的定义,求得,;再由三角形外角性质得,即,求得
    考查三角形外角性质,角平分线的定义及三角形内角和定理.
    17.【答案】
    【解析】解:,,

    又,,


    故答案为:
    根据三角形外角和定理得出,进而求出,再利用,进而利用已知求出即可.
    此题主要考查了三角形外角和定理以及角之间等量代换,利用外角和定理得出是解决问题的关键.
    18.【答案】
    【解析】解:将长方形纸片沿EF折叠后,点C、D分别落在点H、G的位置,
    ,,
    由翻折而成,

    ,,






    故答案为:
    根据折叠的性质求出,,,根据邻补角定义求出,再根据“两直线平行,同旁内角互补”求解即可.
    此题考查了平行线的性质、折叠的性质,熟记平行线的性质、折叠的性质是解题的关键.
    19.【答案】a c d 内错 2 4
    【解析】解:如图:设直线a与直线d相交于点A,直线b与直线c相交于点B,直线a与直线b相交于点C,
    和是直线a与直线c被直线d所截得到的内错角.的内错角是和,共有2个,的同位角是,,,,共有4个,
    故答案为:a;c;d;内错;2;
    设直线a与直线d相交于点A,直线b与直线c相交于点B,直线a与直线b相交于点C,根据内错角,同位角的定义,逐一判断即可解答.
    本题考查了同位角、内错角,同旁内角,熟练掌握同位角、内错角,同旁内角的特征是解题的关键.
    20.【答案】解:原式

    【解析】根据二次根式的加减法运算法则计算即可.
    本题考查的是二次根式的加减法,熟练掌握其运算法则是解题的关键.
    21.【答案】解:原式

    【解析】根据二次根式的乘除法法则进行计算.
    本题考查了二次根式的乘除法,掌握二次根式的乘除法法则是关键.
    22.【答案】解:原式

    【解析】首先根据二次根式的性质,完全平方公式和零指数幂法则化简,然后计算加减即可.
    此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
    23.【答案】解:原式

    【解析】根据分数指数幂和负整数指数幂的运算法则计算即可.
    本题考查分数指数幂和负整数指数幂等,掌握其运算法则是本题的关键.
    24.【答案】解:过点C作于点D,则表示点C到直线AB的距离的线段是
    取AC的中点,连接BE,则直线BE三角形ABC分成面积相等的两部分.
    取AC的中点E,连接PE,BE,过点B作交AC于点D,则点D使得折线BPD将三角形ABC分成面积相等的两部分.
    理由:设PD与BE交于点O,



    为AC的中点,

    折线BPD将三角形ABC分成面积相等的两部分.
    【解析】过点C作于点D,则可得出答案;
    取AC的中点,连接BE,则直线BE三角形ABC分成面积相等的两部分.
    取AC的中点E,连接PE,BE,过点B作交AC于点D,则点D为所求的点.
    本题考查了平行线的性质,中点的性质,熟练掌握中点性质的应用,作出辅助线,进行面积的转化是解答本题的关键.
    25.【答案】三角形内角和定理 等角的余角相等 BGD 内错角相等,两直线平行 AH BG 同旁内角互补,两直线平行
    【解析】解:因为,已知,
    所以,垂直的意义,
    又因为,
    三角形内角和定理,
    所以,,
    所以等角的余角相等,
    因为已知,
    所以等量代换,
    所以内错角相等,两直线平行,
    因为与互补已知,
    所以,
    所以同旁内角互补,两直线平行
    所以平行于同一条直线的两直线平行
    故答案为:三角形内角和定理;等角的余角相等;BGD;内错角相等,两直线平行;AH,BG,同旁内角互补,两直线平行.
    根据平行线的判定、余角的性质以及平行公理进行判定即可.
    本题考查了平行线的判定,解题的关键是熟练掌握平行线的判定定理并灵活运用.
    26.【答案】解:,,,

    是的角平分线,

    是BC边上的高,



    于F,


    【解析】根据三角形内角和定理求出,根据角平分线定义求出,结合垂直的定义根据三角形内角和定理求出,则,再根据三角形内角和定理求解即可.
    此题考查了三角形内角和定理,熟记三角形内角和定理是解题的关键.
    27.【答案】解:,理由如下:
    ,,







    【解析】根据同角的补角相等求出,根据“内错角相等,两直线平行”求出,则,等量代换求出,即可判定,根据“如果一条直线垂直于两条平行线中的一条,那么这条直线必垂直于两条平行线中的另一条”即可得解.
    此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.
    28.【答案】
    【解析】解:过点F作,











    故答案为:;



    由可得:,

    由可得:,,
    平分,GH平分,
    ,,

    故答案为:
    过点F作,利用猪脚模型可求出,然后利用平角定义可得,即可解答;
    根据垂直定义可得,从而利用直角三角形的两个锐角互余可得,再利用的结论可得:,然后利用同角的余角相等可得:,即可解答;
    利用的结论可得:,,再利用角平分线的定义可得,,然后利用等量代换可得,即可解答.
    本题考查了平行线的性质,熟练掌握猪脚模型是解题的关键.

    相关试卷

    2023-2024学年上海市杨浦区八年级(下)期中数学试卷(含解析):

    这是一份2023-2024学年上海市杨浦区八年级(下)期中数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年上海市杨浦区部分学校七年级(下)期中数学试卷(含解析):

    这是一份2023-2024学年上海市杨浦区部分学校七年级(下)期中数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    +上海市杨浦区部分学校+2023-2024学年七年级下学期期中考试数学试题:

    这是一份+上海市杨浦区部分学校+2023-2024学年七年级下学期期中考试数学试题,共6页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map